Interfacial zippering-up of coiled-coil protein filaments

2015 ◽  
Vol 17 (46) ◽  
pp. 31055-31060 ◽  
Author(s):  
Emiliana De Santis ◽  
Valeria Castelletto ◽  
Maxim G. Ryadnov

A de novo self-assembly topology for engineering protein nanostructures under morphological control is reported.

2008 ◽  
Vol 183 (3) ◽  
pp. 543-554 ◽  
Author(s):  
Miguel Vicente-Manzanares ◽  
Margaret A. Koach ◽  
Leanna Whitmore ◽  
Marcelo L. Lamers ◽  
Alan F. Horwitz

We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin filament bundles and adhesions, which locally inhibit protrusion and define the morphology of the tail. Myosin IIA forms de novo filaments away from the myosin IIB–enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during filament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabio Lapenta ◽  
Jana Aupič ◽  
Marco Vezzoli ◽  
Žiga Strmšek ◽  
Stefano Da Vela ◽  
...  

AbstractCoiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes.


2020 ◽  
Author(s):  
Johanna M. Galloway ◽  
Harriet E. V. Bray ◽  
Deborah K. Shoemark ◽  
Lorna R. Hodgson ◽  
Jennifer Coombs ◽  
...  

AbstractThe design and assembly of peptide based materials has advanced considerably, leading to a variety of fibrous, sheet and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here we present a de novo peptide system that forms nanoparticles or sheets depending on the strategic placement of a ‘disulfide pin’ between two elements of secondary structure that drive self-assembly. Specifically, we join homodimerizing and homotrimerizing de novo coiled-coil α-helices with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling and advanced microscopy show that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.


2004 ◽  
Vol 57 (1) ◽  
pp. 33 ◽  
Author(s):  
Guido W. M. Vandermeulen ◽  
Christos Tziatzios ◽  
Dieter Schubert ◽  
Philip R. Andres ◽  
Alexander Alexeev ◽  
...  

This paper describes the supramolecular organization of a novel de novo designed metalloprotein, which consists of two N-terminal terpyridine modified coiled-coil protein folding motif sequences held together by an iron(II) ion. The self-assembly of the metalloprotein is the result of the interplay of metal ion complexation and protein folding, and can be manipulated by changes in concentration, temperature, and solvent. At low concentrations, folding and organization of the metalloprotein resembles that of the native coiled-coil peptide. Besides unimeric species, also dimeric and tetrameric metalloprotein assemblies were found. Several indications suggest that at least part of these unimeric species may exist as intramolecularly folded coiled-coils, however, unambiguous proof is lacking at the moment. At higher concentrations, folding and organization is dominated by the large octahedral [FeII(terpy)2] complexes (terpy = 2,2′:6′,2″-terpyridine) and considerable amounts of large, ill-defined aggregates are formed.


2021 ◽  
Vol 118 (17) ◽  
pp. e2021899118
Author(s):  
Andreja Majerle ◽  
San Hadži ◽  
Jana Aupič ◽  
Tadej Satler ◽  
Fabio Lapenta ◽  
...  

Coiled-coil (CC) dimers are widely used in protein design because of their modularity and well-understood sequence–structure relationship. In CC protein origami design, a polypeptide chain is assembled from a defined sequence of CC building segments that determine the self-assembly of protein cages into polyhedral shapes, such as the tetrahedron, triangular prism, or four-sided pyramid. However, a targeted functionalization of the CC modules could significantly expand the versatility of protein origami scaffolds. Here, we describe a panel of single-chain camelid antibodies (nanobodies) directed against different CC modules of a de novo designed protein origami tetrahedron. We show that these nanobodies are able to recognize the same CC modules in different polyhedral contexts, such as isolated CC dimers, tetrahedra, triangular prisms, or trigonal bipyramids, thereby extending the ability to functionalize polyhedra with nanobodies in a desired stoichiometry. Crystal structures of five nanobody-CC complexes in combination with small-angle X-ray scattering show binding interactions between nanobodies and CC dimers forming the edges of a tetrahedron with the nanobody entering the tetrahedral cavity. Furthermore, we identified a pair of allosteric nanobodies in which the binding to the distant epitopes on the antiparallel homodimeric APH CC is coupled via a strong positive cooperativity. A toolbox of well-characterized nanobodies specific for CC modules provides a unique tool to target defined sites in the designed protein structures, thus opening numerous opportunities for the functionalization of CC protein origami polyhedra or CC-based bionanomaterials.


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Meleties ◽  
Priya Katyal ◽  
Bonnie Lin ◽  
Dustin Britton ◽  
Jin Kim Montclare

Owing to their tunable properties, hydrogels comprised of stimuli sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We...


2002 ◽  
Vol 137 (1-2) ◽  
pp. 65-72 ◽  
Author(s):  
Markus Meier ◽  
Ariel Lustig ◽  
Ueli Aebi ◽  
Peter Burkhard
Keyword(s):  
De Novo ◽  

2021 ◽  
Author(s):  
Jitendra Sahu ◽  
Shahbaz Lone ◽  
Kalyan Sadhu

Abstract The key steps for seed mediated growth of noble metal nanoparticles involve primary and secondary nucleation, which depends upon the energy barrier and ligand supersaturation standards of the medium. Herein we report the unique case of methionine (Met) controlled growth reaction, which rather proceeds via impeding secondary nucleation in presence of citrate stabilized gold nanoparticle (AuNP). The interaction between freshly generated Au+ and thioether group of Met in the medium restricts the secondary nucleation process involving further Au+ reduction. This incomplete conversion of Au+ results in a significant enhancement of the zeta (ζ) potential even at low concentration of Met. Furthermore, the aurophilic interaction of Au+ controls the self-assembly process of the in situ generated emissive nucleated particles. Nucleation of primary particles on seed surface, their segregation and time dependent conversion to larger particles within self-assembly confirm the nonclassical growth, which has further been explored with Met containing bio-inspired peptides.


2021 ◽  
Author(s):  
Chao-Pei Liu ◽  
Wenxing Jin ◽  
Jie Hu ◽  
Mingzhu Wang ◽  
Jingjing Chen ◽  
...  

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3–H4 chaperones found in distinct and common complexes, yet how sNASP binds H3–H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nα region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3–H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3–H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-35
Author(s):  
Julia Skokowa ◽  
Mohammad Elgamacy ◽  
Patrick Müller

Protein therapeutics are clinically developed and used as minorly engineered forms of their natural templates. This direct adoption of natural proteins in therapeutic contexts very frequently faces major challenges, including instability, poor solubility, and aggregation, which may result in undesired clinical outcomes. In contrast to classical protein engineering techniques, de novo protein design enables the introduction of radical sequence and structure manipulations, which can be used to address these challenges. In this work, we test the utility of two different design strategies to design novel granulopoietic proteins, using structural information from human granulocyte-colony stimulating factor (hG-CSF) as a template. The two strategies are: (1) An epitope rescaffolding where we migrate a tertiary structural epitope to simpler, idealised, proteins scaffolds (Fig. 1A-C), and (2) a topological refactoring strategy, where we change the protein fold by rearranging connections across the secondary structures and optimised the designed sequence of the new fold (Fig. 1A,D,E). Testing only eight designs, we obtained novel granulopoietic proteins that bind to the G-CSF receptor, have nanomolar activity in cell-based assays, and were highly thermostable and protease-resistant. NMR structure determination showed three designs to match their designed coordinates within less than 2.5 Å. While the designs possessed starkly different sequence and structure from the native G-CSF, they showed very specific activity in differentiating primary human haematopoietic stem cells into fully mature granulocytes. Morever, one design shows significant and specific activity in vivo in zebrafish and mice. These results are prospectively directing us to investigate the role of dimerisation geometry of G-GCSF receptor on activation magnitude and downstream signalling pathways. More broadly, the results also motivate our ongoing work on to design other heamatopoietic agents. In conclusion, our findings highlight the utility of computational protein design as a highly effective and guided means for discovering nover receptor modulators, and to obtain new mechanistic information about the target molecule. Figure 1. Two different strategies to generate superfolding G-CSF designs. (A) X-ray structure of G-CSF (orange) bound to its cognate receptor (red) through its binding epitope (blue). According to the epitope rescaffolding strategy, (B) the critical binding epitope residues were disembodied and used as a geometric search query against the entire Protein Data Bank (PDB) to retrieve structurally compatible scaffolds. The top six compatible scaffolds structures are shown in cartoon representation. (C) The top two templates chosen for sequence design, were a de novo designed coiled-coil and a four-helix bundle with unknown function. The binding epitopes were grafted, and the scaffolds were optimised to rigidly host the guest epitope. (D-E) According to the topological refactoring strategy (D) the topology of the native G-CSF was rewired from around the fixed binding epitope, and then was further mutated to idealise the core residues (blue volume (E)) and residues distal from the binding epitope (orange crust (E)). Both strategies aimed at simplifying the topology, reducing the size, and rigidifying the bound epitope conformation through alternate means. Figure 1 Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document