scholarly journals Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruoqian Lin ◽  
Seong-Min Bak ◽  
Youngho Shin ◽  
Rui Zhang ◽  
Chunyang Wang ◽  
...  

AbstractHigh-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials’ thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient’s stabilization effect remains elusive because it is inseparable from nickel’s valence gradient effect. To isolate nickel’s valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.

2020 ◽  
Vol MA2020-02 (1) ◽  
pp. 42-42
Author(s):  
Ruoqian Lin ◽  
Seongmin Bak ◽  
Youngho Shin ◽  
Huolin L. Xin ◽  
Xiao-Qing Yang

2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Author(s):  
Umair Nisar ◽  
Nitin Muralidharan ◽  
Rachid Essehli ◽  
Ruhul Amin ◽  
Ilias Belharouak

2019 ◽  
Vol 97 (2) ◽  
pp. 86-93 ◽  
Author(s):  
Yong Pan ◽  
Weihua Zhu ◽  
Heming Xiao

A new family of azaoxaadamantane cage compounds were firstly designed by introducing the oxygen atom into hexanitrohexaazaoxaadmantane (HNHAA) to replace the N–NO2 group. Their properties including heats of formation (HOFs), detonation properties, strain energies, thermal stability, and sensitivity were extensively studied by using density functional theory. All of the title compounds exhibit surprisingly high density (ρ > 2.01 g/cm3) and excellent detonation properties (detonation velocity (D) > 9.29 km/s and detonation pressure (P) > 40.80 GPa). In particular, B (4,8,9,10-tetraazadioxaadamantane) and C (6,8,9,10-tetraazadioxaadamantane) have a remarkably high D and P values (9.70 km/s and 44.45 GPa, respectively), which are higher than that of HNHAA or CL-20. All of the title compound have higher thermal stability and lower sensitivity (h50 > 19.58 cm) compared with the parent compound HNHAA. Three triazatrioxaadamantane cage compounds, D (6,8,9-triazatrioxaadamantane), E (6,8,10-triazatrioxaadamantane), and F (8,9,10-triazatrioxaadamantane), are expected to be relatively insensitive explosives. All of the title compounds exhibit a combination of high denotation properties, good thermal stability, and low insensitivity.


1987 ◽  
Vol 62 (3) ◽  
pp. 194-203 ◽  
Author(s):  
V. F. Vinokurov ◽  
I. V. Gorynin ◽  
G. T. Zhdan ◽  
Sh. Sh. Ibragimov ◽  
O. A. Kozhevnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document