scholarly journals A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew J. McDermott ◽  
Shyam S. Dwaraknath ◽  
Kristin A. Persson

AbstractAccelerated inorganic synthesis remains a significant challenge in the search for novel, functional materials. Many of the principles which enable “synthesis by design” in synthetic organic chemistry do not exist in solid-state chemistry, despite the availability of extensive computed/experimental thermochemistry data. In this work, we present a chemical reaction network model for solid-state synthesis constructed from available thermochemistry data and devise a computationally tractable approach for suggesting likely reaction pathways via the application of pathfinding algorithms and linear combination of lowest-cost paths in the network. We demonstrate initial success of the network in predicting complex reaction pathways comparable to those reported in the literature for YMnO3, Y2Mn2O7, Fe2SiS4, and YBa2Cu3O6.5. The reaction network presents opportunities for enabling reaction pathway prediction, rapid iteration between experimental/theoretical results, and ultimately, control of the synthesis of solid-state materials.

2020 ◽  
Author(s):  
Matthew J. McDermott ◽  
Shyam S. Dwaraknath ◽  
Kristin A. Persson

Abstract Accelerated synthesis of inorganic materials remains a significant challenge in the search for novel, functional materials. Many of the chemical principles which enable "synthesis by design" in synthetic organic chemistry do not exist in solid-state chemistry, despite extensive computed/experimental thermochemistry data. We present a chemical reaction network model constructed from thermochemistry databases that captures features of the thermodynamic phase space which synthesis reactions traverse. Directed edges in the network are assigned weights via a transformation that maps reaction parameters to costs. We devise a computationally tractable approach for suggesting likely reaction pathways via application of pathfinding algorithms and linear combination of lowest-cost paths in the network. We demonstrate initial success of the reaction network in predicting a complex metathesis reaction pathway toward yttrium manganese oxide YMnO3. The reaction network presents new opportunities for enabling reaction pathway prediction, rapid iteration between experimental/theoretical results, and ultimately, control of synthesis of solid-state materials.


2021 ◽  
Author(s):  
Michelle P. van der Helm ◽  
Tuanke de Beun ◽  
Rienk Eelkema

We show, via simulations, how catalytic control over individual paths in a fuel-driven non-equilibrium chemical reaction network in batch or flow gives rise to responses in maximum conversion, lifetime and steady states.


2021 ◽  
Vol 19 ◽  
pp. 246-250
Author(s):  
K.D. Ferreira ◽  
◽  
G. Gasparatto ◽  
G.P. Viajante ◽  
J.F. Carvalho ◽  
...  

In recent years, the increase of economic and environmental problems related to energy generation has increased researches at renewable energy sources. Among others, the fuel cells excel as promising alternative technology of electricity generation and materials science is an ally in the search for better and more efficient materials for this application. In particular, solid-state ionic conductors represent functional materials with promising advantages for fuel cells, as is the case of Bi2O3-based oxygen ion conductors, however, they need to have its cubic phase stabilized at room temperature. This paper presents a study of the Bi6Te2-xRxO13 (R = Ti, Si and Ce) systems for such an application. Solid state reaction was used to materials synthesis. The 3Bi2O3:2TeO2 system present two phases, an orthorhombic one (Bi6Te2O15) stable at room temperature and another high temperature cubic (Bi6Te2O13). Experiments of substitution of Te ions by Ti, Si and Ce ions using the Bi6Te2- xRxO13 matrix were done intending to stabilize the cubic phase at room temperature and the results are presented as well as discussed here.


2021 ◽  
Author(s):  
◽  
Julia Schacht

<p>Metal clusters have been a subject of interdisciplinary research for many years as they act as a bridge between atoms and solid-state materials. In particular, clusters that show distinct thermodynamic stability and unusual atom like behavior, with an electronic shell structure that exhibits a superatomic nature, have attracted considerable attention. The concept of clusters behaving as individual atoms and furthermore mimicking the chemistry of specific elements directly leads to the idea of using those nanoparticles as building blocks for new functional materials. Furthermore, it is interesting that one can change the properties of cluster assembled materials by solely changing the properties of the individual clusters involved.  In this work, various factors affecting superatomic assemblies are identified and critically analyzed within the means of first-principles computations. The icosahedral gold cluster Au₁₃[RS(AuSR)₂]₆ has been chosen as a model system to study the tunability of the electronic structure using single atomic impurities. In this context the doped clusters were found to be tunable such, that they reveal atomic properties, e.g. electron affinities similar to individual halogen atoms. In addition, the choice of ligands protecting the clusters is evaluated regarding the stability of the whole cluster and the involvement of the ligands in creating the superatomic structure. The latter was found to be important when thinking of orbital overlap in superatomic assemblies.  In a next step the knowledge gained is used to investigate cluster-cluster interactions and detect pairs of clusters that are good candidates to create new superatomic materials. Furthermore basic principles regarding cluster assemblies are established and partially tested in an experimental collaboration studing the structure of an Au₉(PPh₃)₈-C₆₀ assembly.  Beyond the investigation of individual gold clusters and gold cluster materials, the electronic structure of binary solid state materials consisting of ligand protected transition metal-chalcogen clusters and fullerenes, as synthesized by Roy et al., is presented. This study shows an intermediate case of non-tunable clusters and furthermore displays the partial loss of the superatomic character of the transition metal chalcogen clusters due to charge transfer.  An experimental collaboration conducted in cooperation with the research group of Prof. Beate Paulus in Berlin proceeds even further and investigates the absorption of water on non-superatomic aluminumoxo fluoride clusters.</p>


2021 ◽  
Author(s):  
◽  
Julia Schacht

<p>Metal clusters have been a subject of interdisciplinary research for many years as they act as a bridge between atoms and solid-state materials. In particular, clusters that show distinct thermodynamic stability and unusual atom like behavior, with an electronic shell structure that exhibits a superatomic nature, have attracted considerable attention. The concept of clusters behaving as individual atoms and furthermore mimicking the chemistry of specific elements directly leads to the idea of using those nanoparticles as building blocks for new functional materials. Furthermore, it is interesting that one can change the properties of cluster assembled materials by solely changing the properties of the individual clusters involved.  In this work, various factors affecting superatomic assemblies are identified and critically analyzed within the means of first-principles computations. The icosahedral gold cluster Au₁₃[RS(AuSR)₂]₆ has been chosen as a model system to study the tunability of the electronic structure using single atomic impurities. In this context the doped clusters were found to be tunable such, that they reveal atomic properties, e.g. electron affinities similar to individual halogen atoms. In addition, the choice of ligands protecting the clusters is evaluated regarding the stability of the whole cluster and the involvement of the ligands in creating the superatomic structure. The latter was found to be important when thinking of orbital overlap in superatomic assemblies.  In a next step the knowledge gained is used to investigate cluster-cluster interactions and detect pairs of clusters that are good candidates to create new superatomic materials. Furthermore basic principles regarding cluster assemblies are established and partially tested in an experimental collaboration studing the structure of an Au₉(PPh₃)₈-C₆₀ assembly.  Beyond the investigation of individual gold clusters and gold cluster materials, the electronic structure of binary solid state materials consisting of ligand protected transition metal-chalcogen clusters and fullerenes, as synthesized by Roy et al., is presented. This study shows an intermediate case of non-tunable clusters and furthermore displays the partial loss of the superatomic character of the transition metal chalcogen clusters due to charge transfer.  An experimental collaboration conducted in cooperation with the research group of Prof. Beate Paulus in Berlin proceeds even further and investigates the absorption of water on non-superatomic aluminumoxo fluoride clusters.</p>


2020 ◽  
Vol 153 (3) ◽  
pp. 030901
Author(s):  
Alyssa A. Cassabaum ◽  
Kajari Bera ◽  
Christopher C. Rich ◽  
Bailey R. Nebgen ◽  
Siu Yi Kwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document