Electric-field control of magnetic states, charge transfer, and patterning of adatoms on graphene: First-principles density functional theory calculations

2009 ◽  
Vol 80 (23) ◽  
Author(s):  
Yun-Hao Lu ◽  
Lei Shi ◽  
Chun Zhang ◽  
Yuan-Ping Feng
2016 ◽  
Vol 18 (24) ◽  
pp. 16386-16395 ◽  
Author(s):  
Qiuhua Liang ◽  
Junke Jiang ◽  
Ruishen Meng ◽  
Huaiyu Ye ◽  
Chunjian Tan ◽  
...  

The electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers were studied by using density functional theory calculations.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39546-39555 ◽  
Author(s):  
Ming-Yang Liu ◽  
Yang Huang ◽  
Qing-Yuan Chen ◽  
Ze-Yu Li ◽  
Chao Cao ◽  
...  

Based on first-principles density functional theory calculations, we systemically study the properties of two-dimensional buckled single-layer bismuth (b-bismuthene).


2017 ◽  
Vol 31 (25) ◽  
pp. 1750229 ◽  
Author(s):  
Xiangying Su ◽  
Hongling Cui ◽  
Weiwei Ju ◽  
Yongliang Yong ◽  
Xiaohong Li

In this paper, the geometric and electronic structure of MoS2 monolayer (ML) adsorbed on SiO2 (0001) surface were studied by using density functional theory calculations. The calculated interfacial binding energy shows that the MoS2/SiO2 hybrid system is stable. MoS2 ML is bound to the SiO2 surface with a big interlayer spacing and no covalent bonds form at the interface. The study of the density of states and the charge transfer indicates that the interaction between MoS2 ML and the SiO2 substrate is very weak. As a result, the electronic properties of MoS2 ML are almost not affected by the SiO2 substrate. This work will be beneficial to the design of MoS2 ML-based devices where a substrate is needed.


2013 ◽  
Vol 91 (1) ◽  
pp. 81-84
Author(s):  
Aqeel Mohsin Ali

The density functional theory calculations are applied for C20 cage fullerenes. Furan, pyrole, and phenylvinyle monomers are made to interact with a C20 cage at the same C position. An electric field was applied with varying strength. Computations were carried out for all cases at the B3LYP/6-31G* level. The structure, energetic, and relative stabilities of the compounds were compared with each other and analyzed. In addition, the electric field dependent and independent electronic transition spectra of the proposed stable neutral C20 cage are investigated.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2001 ◽  
Vol 670 ◽  
Author(s):  
Michael Haverty ◽  
Atsushi Kawamoto ◽  
Gyuchang Jun ◽  
Kyeongjae Cho ◽  
Robert Dutton

ABSTRACTBulk Density Functional Theory calculations were performed on Hf and Zr substitutions for Al in κ-alumina. The lowest energy configuration found was an octahedrally coordinated Zr site. Zr dissolution was favorable with an enthalpy of -2eV/unit cell for forming Al1.875Zr0.125O3 from pure Zr and κ-alumina. Hf and Zr substitution for Al atoms introduced empty d-states below the conduction band edge reducing the Eg of pure κ-alumina (7.5eV) to 6.4-5.9eV. The edge of the valence band however remained fixed by the O p-state character. The substitution of Hf and Zr into the alumina structure may lead to a higher dielectric constant, but will also reduce Eg and result in a trade off in tunneling currents in devices.


2017 ◽  
Vol 7 (5) ◽  
pp. 1040-1044 ◽  
Author(s):  
M. C. S. Escaño ◽  
H. Kasai

A novel mechanism of oxygen reaction on a metal surface beyond the present charge transfer or hybridization mechanism, spin-orientation dependence via a coupling mechanism due to the finite spin moment of O2 at the transition state, is obtained using a combination of spin density functional theory (SDFT) and constrained DFT.


Sign in / Sign up

Export Citation Format

Share Document