scholarly journals Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander J. Gillett ◽  
Claire Tonnelé ◽  
Giacomo Londi ◽  
Gaetano Ricci ◽  
Manon Catherin ◽  
...  

AbstractEngineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm−1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 μs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1735 ◽  
Author(s):  
Tae Hui Kwon ◽  
Soon Ok Jeon ◽  
Masaki Numata ◽  
Hasup Lee ◽  
Yeon Sook Chung ◽  
...  

The short material lifetime of thermally activated delayed fluorescence (TADF) technology is a major obstacle to the development of economically feasible, highly efficient, and durable devices for commercial applications. TADF devices are also hampered by insufficient operational stability. In this paper, we report the design, synthesis, and evaluation of new TADF molecules possessing a sterically twisted skeleton by interlocking donor and acceptor moieties through a C–C bond. Compared to C–N-bond TADF molecules, such as CPT2, the C–C-bond TADF molecules showed a large dihedral angle increase by more than 30 times and a singlet–triplet energy-gap decrease to less than 0.22 eV because of the steric hindrance caused by the direct C–C bond connection. With the introduction of a dibenzofuran core structure, devices comprising BMK-T317 and BMK-T318 exhibited a magnificent display performance, especially their external quantum efficiencies, which were as high as 19.9% and 18.8%, respectively. Moreover, the efficiency roll-off of BMK-T318 improved significantly (26.7%). These results indicate that stability of the material can be expected through the reduction of their singlet–triplet splitting and the precise adjustment of dihedral angles between the donor–acceptor skeletons.


2017 ◽  
Vol 19 (32) ◽  
pp. 21639-21647 ◽  
Author(s):  
Lijuan Wang ◽  
Tao Li ◽  
Peicheng Feng ◽  
Yan Song

Long-wavelength TADF emitters could be achieved with both small ΔEST and high kr through introducing small electron-withdrawing substituents!


Author(s):  
Fernando B. Dias

The kinetics of thermally activated delayed fluorescence (TADF) is investigated in dilute solutions of organic materials with application in blue light-emitting diodes (OLEDs). A method to accurately determine the energy barrier (Δ E a ) and the rate of reverse intersystem crossing ( k Risc ) in TADF emitters is developed, and applied to investigate the triplet-harvesting mechanism in blue-emitting materials with large singlet–triplet energy gap (Δ E ST ). In these materials, triplet–triplet annihilation (TTA) is the dominant mechanism for triplet harvesting; however, above a threshold temperature TADF is able to compete with TTA and give enhanced delayed fluorescence. Evidence is obtained for the interplay between the TTA and the TADF mechanisms in these materials.


2017 ◽  
Vol 36 (2) ◽  
pp. 239 ◽  
Author(s):  
Selçuk Gümüş ◽  
Ayşegül Gümüş

A series of phenanthrene and phenanthroline derivatives were considered computationally by the application of Density Functional Theory at the B3LYP/6-31++G(d,p) level to investigate their potential usage as organic solar cell components, thermally activated delayed fluorescence and nonlinear optic compounds. The structures were constructed as a D-π-A motif in order to increase the ability to achieve intramolecular charge transfer enabling them to act as organic semiconductors. The inter-frontier energy gap of all compounds was found to be in the range of semiconductors. The thermally activated delayed fluorescence (TADF) properties of the compounds were also discussed in relation to the results obtained by TD-DFT calculations. Some of them possessed very narrow triplet-singlet transition energy leading to future TADF applications. Moreover, the nonlinear optic characteristics of all compounds were investigated through calculations of the total molecular dipole moment (μtot), linear polarizability (αtot) and hyperpolarizability (βtot). The results indicate the potential nonlinear optic property of all of the systems.


2015 ◽  
Vol 44 (3) ◽  
pp. 360-362 ◽  
Author(s):  
Yuta Sagara ◽  
Katsuyuki Shizu ◽  
Hiroyuki Tanaka ◽  
Hiroshi Miyazaki ◽  
Kenichi Goushi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document