scholarly journals Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca Pagliaroli ◽  
Patrizia Porazzi ◽  
Alyxandra T. Curtis ◽  
Chiara Scopa ◽  
Harald M. M. Mikkers ◽  
...  

AbstractSubunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/− Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B-haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome.

2011 ◽  
Vol 356 (1) ◽  
pp. 197
Author(s):  
Dennis A. Ridenour ◽  
Rebecca McLennan ◽  
Jessica M. Teddy ◽  
Katherine W. Prather ◽  
Craig L. Semerad ◽  
...  

2018 ◽  
Vol 154 ◽  
pp. 170-178 ◽  
Author(s):  
Juan Ignacio Leal ◽  
Soraya Villaseca ◽  
Andrea Beyer ◽  
Gabriela Toro-Tapia ◽  
Marcela Torrejón

Development ◽  
1977 ◽  
Vol 39 (1) ◽  
pp. 267-271
Author(s):  
John R. Hassell ◽  
Judith H. Greenberg ◽  
Malcolm C. Johnston

Chick embryos at stage 8, prior to neural crest cell migration, were explanted on whole egg medium with or without vitamin A and cultured for 3 days. Sections through the head regions showed that the cranial neural crest cells had migrated into the first visceral arch in the controls but were absent from this structure in the treated embryos. These observations suggest that vitamin A inhibits neural crest cell development or migration, an effect which may in part account for the facial malformations produced by excess vitamin A.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Walid D. Fakhouri ◽  
Jessica Wildgrube Bertol ◽  
Victoria K. Xie ◽  
Shelby Johnston ◽  
Kelsea Hubka ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0131768 ◽  
Author(s):  
Bernd Willems ◽  
Shijie Tao ◽  
Tingsheng Yu ◽  
Ann Huysseune ◽  
Paul Eckhard Witten ◽  
...  

2012 ◽  
Vol 21 (17) ◽  
pp. 3069-3080 ◽  
Author(s):  
Mamoru Ishii ◽  
Athena C. Arias ◽  
Liqiong Liu ◽  
Yi-Bu Chen ◽  
Marianne E. Bronner ◽  
...  

2013 ◽  
Vol 383 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Sophie Wiszniak ◽  
Samuela Kabbara ◽  
Rachael Lumb ◽  
Michaela Scherer ◽  
Genevieve Secker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document