scholarly journals Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingling Zhang ◽  
Yu Guo ◽  
Rui Hao ◽  
Yafei Shi ◽  
Hongjun You ◽  
...  

AbstractCurrently, owing to the single-molecule-level sensitivity and highly informative spectroscopic characteristics, surface-enhanced Raman scattering (SERS) is regarded as the most direct and effective detection technique. However, SERS still faces several challenges in its practical applications, such as the complex matrix interferences, and low sensitivity to the molecules of intrinsic small cross-sections or weak affinity to the surface of metals. Here, we show an enrichment-typed sensing strategy with both excellent selectivity and ultrahigh detection sensitivity based on a powerful porous composite material, called mesoporous nanosponge. The nanosponge consists of porous β-cyclodextrin polymers immobilized with magnetic NPs, demonstrating remarkable capability of effective and fast removal of organic micropollutants, e.g., ~90% removal efficiency within ~1 min, and an enrichment factor up to ~103. By means of this current enrichment strategy, the limit of detection for typical organic pollutants can be significantly improved by 2~3 orders of magnitude. Consequently, the current enrichment strategy is proved to be applicable in a variety of fields for portable and fast detection, such as Raman and fluorescent sensing.

2021 ◽  
Author(s):  
Lingling Zhang ◽  
Rui Hao ◽  
Hongjun You ◽  
Hu Nan ◽  
Yanzhu Dai ◽  
...  

Abstract Developing advanced sensing and detection technologies to effectively monitor organic micropollutants in water is under urgent demand in both scientific and industrial communities. Currently, owing to the ultrahigh sensitivity on the single-molecule level with highly informative spectra characteristics, SERS technique is regarded as the most direct and effective detection technique. However, some weakly adsorbed molecules, such as most of persistent organic pollutants, cannot exhibit strong SERS signals, which is a long-standing key challenge that has not been solved. Here, we show an enrichment-typed sensing strategy based on a powerful porous composite material, call mesoporous nanosponge. The nanosponge consists of magnetic nanoparticles immobilized porous β-cyclodextrin polymers, demonstrating remarkable capability of effective and fast removal of organic micropollutants, e.g. ~90% removal efficiency within ~1 min. With the anchoring of magnetic nanoparticles, the current new polymer adsorbent can be easily recycled from water and re-dispersed in ethanol so that the target molecules in the cavity of adsorbent is concentrated, with an enrichment factor up to ~103. By means of the current enrichment strategy, the limit of detection (LOD) of the typical organic pollutants can be significantly improved, i.e. increasing 2~3 orders of magnitude, compared with the detection without molecule enrichment protocol. Consequently, the current enrichment strategy is proved to be applicable in a variety of fields for portable and fast detection, such as Raman and fluorescent.


2021 ◽  
Author(s):  
◽  
Evan Blackie

<p>This thesis presents a rigorous stepwise methodology towards the accurate measurement and quantification of the SERS enhancement factor (EF), the key parameter in describing the SERS effect. The work represents, we believe, a successful attempt to resolve some of the inconsistencies in the literature and to refocus the field by emphasizing the importance of consistent definitions and rigorous quantification to elucidate matters of fundamental importance in SERS. The success in our approach is that it combines careful experimental measurements upon a sound theoretical framework, and utilizes a 'toolbox' of techniques developed in recent years, such as bi-analyte SERS (BiASERS) techniques for single-molecule (SM) detection, and isotopic editing. In experimental work, we measure the bare Raman cross-sections of five common probes used in SERS as a first step in measuring the analytical enhancement factor (AEF) and single-molecule enhancement factor (SMEF). The methodology in measuring these EFs involved the use of a reference standard of known cross-section along with a careful characterization of the scattering volume through beam profiling experiments. As a guide to validating the reference cross-section we make extensive use of density functional theory (DFT) calculations to obtain estimates for the intrinsic Raman cross-sections of small, non-resonant probes. The results of this work showed that previous upper limits for the EF reported in the literature of 1014 were based on a faulty normalization of the EF. In fact, EFs of 108 were sufficient to see single molecules, which is much lower than previously expected; under optimum conditions, even lower EFs, possibly down to 105 could be sufficient for the SM detection of resonant probes. As a valuable extension of BiASERS, we elaborate on the synthesis of isotopic analogues of a rhodamine dye as ideal partners for SM experiments. The synthesis and definitive characterization of these probes enable their use in an experiment to determine the SM regime in a liquid colloidal sample. Isotopically edited dyes such as these, in combination with the methodologies of EF quantification outlined herein, set the standard for those interested in accurate quantification of the SERS effect. This approach is useful in terms of both basic theoretical questions and applications such as the effective comparison of SERS substrates. Finally, we extend the techniques developed over the thesis to a long-standing and largely unresolved question in SERS: What is the minimum intrinsic Raman cross-section that can be measured as a single molecule in standard SERS conditions. In this work, we explore the SM detection non-resonant probes, which are the molecules of interest for many practical applications such as forensics and biological assays. Specifically, we demonstrate the successful SM detection of isotopically edited adenine probes.</p>


2021 ◽  
Author(s):  
◽  
Evan Blackie

<p>This thesis presents a rigorous stepwise methodology towards the accurate measurement and quantification of the SERS enhancement factor (EF), the key parameter in describing the SERS effect. The work represents, we believe, a successful attempt to resolve some of the inconsistencies in the literature and to refocus the field by emphasizing the importance of consistent definitions and rigorous quantification to elucidate matters of fundamental importance in SERS. The success in our approach is that it combines careful experimental measurements upon a sound theoretical framework, and utilizes a 'toolbox' of techniques developed in recent years, such as bi-analyte SERS (BiASERS) techniques for single-molecule (SM) detection, and isotopic editing. In experimental work, we measure the bare Raman cross-sections of five common probes used in SERS as a first step in measuring the analytical enhancement factor (AEF) and single-molecule enhancement factor (SMEF). The methodology in measuring these EFs involved the use of a reference standard of known cross-section along with a careful characterization of the scattering volume through beam profiling experiments. As a guide to validating the reference cross-section we make extensive use of density functional theory (DFT) calculations to obtain estimates for the intrinsic Raman cross-sections of small, non-resonant probes. The results of this work showed that previous upper limits for the EF reported in the literature of 1014 were based on a faulty normalization of the EF. In fact, EFs of 108 were sufficient to see single molecules, which is much lower than previously expected; under optimum conditions, even lower EFs, possibly down to 105 could be sufficient for the SM detection of resonant probes. As a valuable extension of BiASERS, we elaborate on the synthesis of isotopic analogues of a rhodamine dye as ideal partners for SM experiments. The synthesis and definitive characterization of these probes enable their use in an experiment to determine the SM regime in a liquid colloidal sample. Isotopically edited dyes such as these, in combination with the methodologies of EF quantification outlined herein, set the standard for those interested in accurate quantification of the SERS effect. This approach is useful in terms of both basic theoretical questions and applications such as the effective comparison of SERS substrates. Finally, we extend the techniques developed over the thesis to a long-standing and largely unresolved question in SERS: What is the minimum intrinsic Raman cross-section that can be measured as a single molecule in standard SERS conditions. In this work, we explore the SM detection non-resonant probes, which are the molecules of interest for many practical applications such as forensics and biological assays. Specifically, we demonstrate the successful SM detection of isotopically edited adenine probes.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3250
Author(s):  
Juanjuan Guo ◽  
Yang Xu ◽  
Caili Fu ◽  
Longhua Guo

Surface-enhanced Raman spectroscopy (SERS) has been proven to be a promising analytical technique with sensitivity at the single-molecule level. However, one of the key problems preventing its real-world application lies in the great challenges that are encountered in the preparation of large-scale, reproducible, and highly sensitive SERS-active substrates. In this work, a new strategy is developed to fabricate an Ag collide SERS substrate by using cetyltrimethylammonium bromide (CTAB) as a connection agent. The developed SERS substrate can be developed on a large scale and is highly efficient, and it has high-density “hot spots” that enhance the yield enormously. We employed 4-methylbenzenethiol(4-MBT) as the SERS probe due to the strong Ag–S linkage. The SERS enhancement factor (EF) was calculated to be ~2.6 × 106. The efficacy of the proposed substrate is demonstrated for the detection of malachite green (MG) as an example. The limit of detection (LOD) for the MG assay is brought down to 1.0 × 10−11 M, and the relative standard deviation (RSD) for the intensity of the main Raman vibration modes (1620, 1038 cm−1) is less than 20%.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 449
Author(s):  
Francesco Dell’Olio

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


2020 ◽  
Vol 11 (18) ◽  
pp. 4563-4577 ◽  
Author(s):  
Ana Isabel Pérez-Jiménez ◽  
Danya Lyu ◽  
Zhixuan Lu ◽  
Guokun Liu ◽  
Bin Ren

Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique with sensitivity down to the single molecule level that provides fine molecular fingerprints, allowing for direct identification of target analytes.


2021 ◽  
Author(s):  
Qiang Zeng ◽  
Xiaoyan Zhou ◽  
Yuting Yang ◽  
Yi Sun ◽  
Jingan Wang ◽  
...  

Abstract The ability to measure many single molecules simultaneously in larger and complex samples is critical to the translation of single-molecule sensors for practical applications in biomarker detection. The challenges lie in the limits imposed by mass transportation and thermodynamics, resulting in long assay time and/or insufficient sensitivity. Here, we report an approach called Sensing Single Molecule under MicroManipulation (SSM3) to circumvent the above limits. In SSM3, the transportation rate of analyte molecules and the kinetics of molecular interaction are fine-tuned by the nanoparticle micromanipulation. The heterogeneous lifetime of molecular complexes is quantified to discriminate specific binding from nonspecific background noise. By the highly-specific digital counting of single molecules, we demonstrate 15-minute assays for direct detection of microRNAs and amyloid-β proteins via electrical or magnetic micromanipulation, with the limit of detection at the subfemtomolar level. The presented approach could inspire more practical applications of single molecule sensors.


2021 ◽  
Author(s):  
Keisuke Shimizu ◽  
Batsaikhan Mijiddorj ◽  
Masataka Usami ◽  
Shuhei Yoshida ◽  
Shiori Akayama ◽  
...  

Abstract The amino acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo protein design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device with practical applications. This peptide, named SV28, forms nanopore structures ranging from 1.6 to 6.2 nm in diameter assembled from 7 to 18 monomers. The nanopore formed with a diameter of 5 nm is able to detect long double-stranded DNA (dsDNA) with 1 kbp length. Moreover, the larger sized nanopore can discriminate and human telomeric DNA (G-quadruplex, G4). The blocking current signals allowed us to investigate the translocation behavior of dsDNA or G4 structure at the single molecule level. Such de novo design of peptide sequences has the potential to create novel nanopores, which would be applicable in molecular transporter between across lipid membrane.


2020 ◽  
Author(s):  
Keisuke Shimizu ◽  
Batsaikhan Mijiddorj ◽  
Shuhei Yoshida ◽  
Shiori Akayama ◽  
Yoshio Hamada ◽  
...  

The amino acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo protein design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device with practical applications. This peptide, named SV28, forms nanopore structures ranging from 1.6 to 6.2 nm in diameter assembled from 7 to 18 monomers. The nanopore formed with a diameter of 5 nm is able to detect long double-stranded DNA (dsDNA) with 1 kbp length, and measurement of current signals allowed us to investigate the translocation behavior of dsDNA at the single molecule level. Such de novo design of peptide sequences has the potential to create assembled structure in lipid membrane such as novel nanopores, which would also be applicable in molecular transporter between inside and outside of lipid membrane.


Sign in / Sign up

Export Citation Format

Share Document