scholarly journals Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emma Lomonte ◽  
Martin A. Wolff ◽  
Fabian Beutel ◽  
Simone Ferrari ◽  
Carsten Schuck ◽  
...  

AbstractLithium-Niobate-On-Insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies because of its high second-order nonlinearity and compact waveguide footprint. Importantly, LNOI allows for creating electro-optically reconfigurable circuits, which can be efficiently operated at cryogenic temperature. Their integration with superconducting nanowire single-photon detectors (SNSPDs) paves the way for realizing scalable photonic devices for active manipulation and detection of quantum states of light. Here we demonstrate integration of these two key components in a low loss (0.2 dB/cm) LNOI waveguide network. As an experimental showcase of our technology, we demonstrate the combined operation of an electrically tunable Mach-Zehnder interferometer and two waveguide-integrated SNSPDs at its outputs. We show static reconfigurability of our system with a bias-drift-free operation over a time of 12 hours, as well as high-speed modulation at a frequency up to 1 GHz. Our results provide blueprints for implementing complex quantum photonic devices on the LNOI platform.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1376
Author(s):  
Xing Wei ◽  
Samuel Kesse

Lithium niobate thin film represents as an ideal material substrate for quantum photonics due to its strong electro-optic effect and high-speed modulation capability. Here, we propose a novel platform which heterogeneously integrates single self-assembled InAs/GaAs quantum dots for a single-photon source on a lithium niobate photonic chip. The InAs/GaAs quantum dots can be transferred to the lithium niobate waveguide via a substrate transfer procedure with nanometer precision and be integrated through van der Waals force. A down-tapered structure is designed and optimized to deliver the photon flux generated from the InAs quantum dots embedded in a GaAs waveguide to the lithium niobate waveguide with an overall efficiency of 42%. In addition, the electro-optical effect is used to tune, and therefore to tune the beam splitting ratio of the integrated lithium niobate directional coupler, which can simultaneously route multiple photons to different spatial modes, and subsequently fan out through grating couplers to achieve single-photon sub-multiplexing. The proposed device opens up novel opportunities for achieving multifunctional hybrid integrated photonic chips.


2016 ◽  
Vol 705 ◽  
pp. 168-173
Author(s):  
Nan Zhou ◽  
Miao Qing Zhuang ◽  
Hao Liang

Avalanche photodiodes are crucial materials for single-photon detection. Single-photon detectors are indispensable components for optical experiments and applications such as quantum information processing and quantum communications, both of which demand high single-photon detection efficiency. The authors have first developed a silicon single-photon avalanche detector in near infrared spectrum with 1 MHz square wave gating and tested its performance. Then we have also designed a high-speed and high-efficiency silicon single-photon detection system with 152 MHz sine wave gating and improved its single-photon detection efficiency to 77.48%.


2010 ◽  
Vol 5 (01) ◽  
pp. P01002-P01002 ◽  
Author(s):  
C D R Azevedo ◽  
M Cortesi ◽  
A V Lyashenko ◽  
A Breskin ◽  
R Chechik ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. 708-715 ◽  
Author(s):  
Tobias Reusch ◽  
Markus Osterhoff ◽  
Johannes Agricola ◽  
Tim Salditt

The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the synchrotron bunch repetition rate. By a novel multi-photon detection scheme, the exact number of X-ray photons within each X-ray pulse can be recorded. Commissioning experiments at beamlines P08 and P10 of the storage ring PETRA III, at DESY, Hamburg, Germany, have been used to validate the pulse-wise multi-photon counting scheme at bunch frequencies ≥31 MHz, enabling pulse-by-pulse readout during the PETRA III 240-bunch mode with single-photon detection capability. An X-ray flux of ≥3.7 × 109 photons s−1can be detected while still resolving individual photons at low count rates.


2019 ◽  
Vol 19 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Ion Vornicu ◽  
Angela Darie ◽  
Ricardo Carmona-Galan ◽  
Angel Rodriguez-Vazquez

2019 ◽  
Vol 14 (5) ◽  
pp. 473-479 ◽  
Author(s):  
Sandra J. Gibson ◽  
Brad van Kasteren ◽  
Burak Tekcan ◽  
Yingchao Cui ◽  
Dick van Dam ◽  
...  

2013 ◽  
Vol 113 (14) ◽  
pp. 143507 ◽  
Author(s):  
G. Reithmaier ◽  
J. Senf ◽  
S. Lichtmannecker ◽  
T. Reichert ◽  
F. Flassig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document