scholarly journals Sample spinning to mitigate polarization artifact and interstitial-vacancy imbalance in ion-beam irradiation

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Cui-Lan Ren ◽  
Yang Yang ◽  
Yong-Gang Li ◽  
Ping Huai ◽  
Zhi-Yuan Zhu ◽  
...  

AbstractAccelerator-based ion-beam irradiation has been widely used to mimic the effects of neutron radiation damage in nuclear reactors. However, ion radiation is most often monodisperse in the incoming ions’ momentum direction, leading to excessive polarization in defect distribution, while the scattering under neutron irradiation is often more isotropic and has less radiation-induced polarization. Mitigation of the excess-polarization as well as the damage non-uniformity artifact might be crucial for making the simulation of neutron radiation by ion-beam radiation more realistic. In this work, a general radiation polarization theory in treating radiation as external polar stimuli is established to understand the natural material responses in different contexts, and the possibility to correct the defect polarization artifact in ion-beam irradiation. Inspired by Magic Angle Spinning in Nuclear Magnetic Resonance, we present a precise sample spinning strategy to reduce the point-defect imbalance effect in ion-beam irradiation. It can be seen that with optimized surface inclination angle and the axis of sample rotation, the vacancy-interstitial population imbalance, as well as the damage profile non-uniformity in a designated region in the target are both reduced. It is estimated that sample spinning frequency on the order of kHz should be sufficient to scramble the ion momentum monodispersity for commonly taken ion fluxes and dose rates, which is experimentally feasible.

Author(s):  
Anatolievich Vladimir ◽  
Zhanna Smagina ◽  
Aigul Zinovieva ◽  
Anatoly Dvurechenskii ◽  
Aleksandr Mudryi

This work devotes to a comparative study of the photoluminescence of Ge/Si epitaxial structures with quantum dots created with using ion beam irradiation and structures with Ge nanoclusters formed as a result of the implantation of Ge ions into silicon and subsequent annealing.


Metabolites ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 54 ◽  
Author(s):  
Lucas-Torres ◽  
Bernard ◽  
Huber ◽  
Berthault ◽  
Nishiyama ◽  
...  

The study of the metabolome within tissues, organisms, cells or biofluids can be carried out by several bioanalytical techniques. Among them, nuclear magnetic resonance (NMR) is one of the principal spectroscopic methods. This is due to a sample rotation technique, high-resolution magic angle spinning (HR-MAS), which targets the analysis of heterogeneous specimens with a bulk sample mass from 5 to 10 mg. Recently, a new approach, high-resolution micro-magic angle spinning (HR-μMAS), has been introduced. It opens, for the first time, the possibility of investigating microscopic specimens (<500 μg) with NMR spectroscopy, strengthening the concept of homogeneous sampling in a heterogeneous specimen. As in all bioanalytical approaches, a clean and reliable sample preparation strategy is a significant component in designing metabolomics (or -omics, in general) studies. The sample preparation for HR-μMAS is consequentially complicated by the μg-scale specimen and has yet to be addressed. This report details the strategies for three specimen types: biofluids, fluid matrices and tissues. It also provides the basis for designing future μMAS NMR studies of microscopic specimens.


Author(s):  
Leo van Wüllen ◽  
Jan Gerrit Schiffmann ◽  
Jakob Kopp ◽  
Zhongqing Liu ◽  
Holger Kirchhain ◽  
...  

AbstractIn this contribution we report on the development and application of modern NMR approaches for the in situ characterization of the crystallization of metastable materials. The work was performed within the framework of the DFG priority programme SPP 1415 “Crystalline Non-Equilibrium Phases”. As one of the goals of this project, the development of a NMR methodology which enables an analysis of local structural motifs on short (1–2 Å) and extended (2–6 Å) length scales without the need for fast magic angle spinning (MAS) has been defined, since the enormous centripetal forces which occur during fast sample rotation (up to 10


Author(s):  
ASIF EQUBAL ◽  
Kan Tagami ◽  
Songi Han

In this paper, we report on an entirely novel way of improving the MAS-DNP efficiency by shaped μw pulse train irradiation for fast and broad-banded (FAB) saturation of the electron spin resonance. FAB-DNP achieved with Arbitrary Wave Generated shaped μw pulse trains facilitates effective and selective saturation of a defined fraction of the total electron spins, and provides superior control over the DNP efficiency under MAS. Experimental and quantum-mechanics based numerically simulated results together demonstrate that FAB-DNP significantly outperforms CW-DNP when the EPR-line of PAs is broadened by conformational distribution and exchange coupling. We demonstrate that the maximum benefit of FAB DNP is achieved when the electron spin-lattice relaxation is fast relative to the MAS frequency, i.e. at higher temperatures and/or when employing metals as PAs. Calculations predict that under short T<sub>1e </sub>conditions AWG-DNP can achieve as much as ~4-fold greater enhancement compared to CW-DNP.


2018 ◽  
Vol 44 (1) ◽  
pp. 144
Author(s):  
Tian-Peng LIU ◽  
Kong-Jun DONG ◽  
Xi-Cun DONG ◽  
Ji-Hong HE ◽  
Min-Xuan LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document