scholarly journals Development of multi-angle fiber array for accurate measurement of flexion and rotation in human joints

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sang-Mi Jeong ◽  
Minkyun Son ◽  
Youngsoo Kang ◽  
Jonguk Yang ◽  
Taekyung Lim ◽  
...  

AbstractHerein, we have proposed a method that uses a highly stretchable and conductive fiber-based multi-angle fiber array, which precisely measures human joint motion in various degrees of freedom (flexion and rotation) at the shoulders, knees, and wrists in real time. By embedding conductive carbon nanotubes (CNTs) within spandex fibers of high elasticity and shape recovery ratio, we monitored joint motion stably without degrading the fiber’s conductivity even during repeated stretching and contraction of different lengths. The strain occurring in a specific direction was monitored using mapping images generated due to the change in resistance that occurred when 12 CNT-embedded spandex fibers arranged in radial lines at intervals of 15° were stretched or contracted by an external force. The proposed high-precision joint-monitoring technology measures human motion accurately and is applicable for use in wearable healthcare devices that require precise measurements.

Author(s):  
Meng-Yun Chen ◽  
Robert L. Williams

The objective of this research is to create a movable, palpable virtual model of the dynamic human upper body, including the spine, shoulders, and arms skeletal structure, with dynamic pivot point and deformable skin. This Virtual Haptic Human Upper Body (VHHUB) model has realistic human motion with anatomically-accurate joint motion limits and a 71 degrees-of-freedom branching serial chain model. The aim is to provide realistic motions when an osteopathic medical student moves the virtual patient for palpatory diagnosis training. Medical trainees can thus practice feeling changes in human tissue due to motions, a common diagnostic technique.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 79114-79120 ◽  
Author(s):  
Yichun Ding ◽  
Jack Yang ◽  
Charles R. Tolle ◽  
Zhengtao Zhu

A highly stretchable and sensitive strain sensor assembled by embedding a free-standing electrospun carbon nanofibers (CNFs) mat in a polyurethane (PU) matrix shows a fast, stable, and reproducible response to strain up to 300%.


Author(s):  
Yujiang Xiang ◽  
Jasbir S. Arora ◽  
Salam Rahmatalla ◽  
Hyun-Joon Chung ◽  
Rajan Bhatt ◽  
...  

Human carrying is simulated in this work by using a skeletal digital human model with 55 degrees of freedom (DOFs). Predictive dynamics approach is used to predict the carrying motion with symmetric and asymmetric loads. In this process, the model predicts joints dynamics using optimization schemes and task-based physical constraints. The results indicated that the model can realistically match human motion and ground reaction forces data during symmetric and asymmetric load carrying task. With such prediction capability the model could be used for biomedical and ergonomic studies.


Author(s):  
Fazia sbargoud ◽  
Mohamed Djeha ◽  
Mohamed Guiatni ◽  
Noureddine Ababou

Among the different bio-signals modalities, Electromyographic signal (EMG) has been one of the frequently used signals in the bio-robotics applications field. This is due to the fact that the EMG reflects directly the muscle activity of the user following the human motion intention. Consequently, the decoding of this intention is an essential task for controlling devices such as prosthetic hands and exoskeletons, based on EMG signals. This paper deals with the processing of EMG signals of the forearm muscles, in order to control two degrees of freedom (2 DoFs) robotic hand. The main contribution of this paper is the proposal of a hybrid approach that combines a pattern and a non-pattern recognition-based strategy. The proposed approach aims to take advantage of both strategies and overcome their shortcomings leading to a better analysis of the user movement intention. The EMG recorded signals are processed for feature extraction based on a Wavelet Packet Decomposition (WPD) method and classification using an Artificial Neural Network (ANN). Furthermore, we investigate the effect of the various parameters such as the applied force level, the number of the EMG channels and the window length of the EMG signal. The proposed approach is validated experimentally under realistic conditions. Very interesting results have been obtained for user intention decoding.


2020 ◽  
Vol 305 (3) ◽  
pp. 1900813 ◽  
Author(s):  
Baowei Cheng ◽  
Shulong Chang ◽  
Hui Li ◽  
Yunxing Li ◽  
Weixia Shen ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Alessandro Scano ◽  
Robert Mihai Mira ◽  
Pietro Cerveri ◽  
Lorenzo Molinari Tosatti ◽  
Marco Sacco

In the field of motion analysis, the gold standard devices are marker-based tracking systems. Despite being very accurate, their cost, stringent working environments, and long preparation time make them unsuitable for small clinics as well as for other scenarios such as industrial application. Since human-centered approaches have been promoted even outside clinical environments, the need for easy-to-use solutions to track human motion is topical. In this context, cost-effective devices, such as RGB-Depth (RBG-D) cameras have been proposed, aiming at a user-centered evaluation in rehabilitation or of workers in industry environment. In this paper, we aimed at comparing marker-based systems and RGB-D cameras for tracking human motion. We used a Vicon system (Vicon Motion Systems, Oxford, UK) as a gold standard for the analysis of accuracy and reliability of the Kinect V2 (Microsoft, Redmond, WA, USA) in a variety of gestures in the upper limb workspace—targeting rehabilitation and working applications. The comparison was performed on a group of 15 adult healthy subjects. Each subject had to perform two types of upper-limb movements (point-to-point and exploration) in three workspace sectors (central, right, and left) that might be explored in rehabilitation and industrial working scenarios. The protocol was conceived to test a wide range of the field of view of the RGB-D device. Our results, detailed in the paper, suggest that RGB-D sensors are adequate to track the upper limb for biomechanical assessments, even though relevant limitations can be found in the assessment and reliability of some specific degrees of freedom and gestures with respect to marker-based systems.


2017 ◽  
Vol 9 (2) ◽  
pp. 1770-1780 ◽  
Author(s):  
Dong Yun Choi ◽  
Min Hyeong Kim ◽  
Yong Suk Oh ◽  
Soo-Ho Jung ◽  
Jae Hee Jung ◽  
...  

Author(s):  
Patrick J. Schimoler ◽  
Jeffrey S. Vipperman ◽  
Laurel Kuxhaus ◽  
Angela M. Flamm ◽  
Daniel D. Budny ◽  
...  

The many muscles crossing the elbow joint allow for its motions to be created from different combinations of muscular activations. Muscles are strictly contractile elements and the joints they surround rely on varying loads from opposing antagonists for stability and movement. In designing a control system to actuate an elbow in a realistic manner, unidirectional, tendon-like actuation and muscle co-activation must be considered in order to successfully control the elbow’s two degrees of freedom. Also important is the multifunctionality of certain muscles, such as the biceps brachii, which create moments impacting both degrees of freedom: flexion / extension and pronation / supination. This paper seeks to develop and implement control algorithms on an elbow joint motion simulator that actuates cadaveric elbow specimens via four major muscles that cross the elbow joint. The algorithms were validated using an anatomically-realistic mechanical elbow. Clinically-meaningful results, such as the evaluation of radial head implants, can only be obtained under repeatable, realistic conditions; therefore, physiologic motions must be created by the application of appropriate loads. This is achieved by including load control on the muscles’ actuators as well as displacement control on both flexion / extension and supination / pronation.


2019 ◽  
Vol 6 (11) ◽  
pp. 3119-3124 ◽  
Author(s):  
Runfei Wang ◽  
Wei Xu ◽  
Wenfeng Shen ◽  
Xiaoqing Shi ◽  
Jian Huang ◽  
...  

Transparent film strain sensors based on silver nanowires and thermoplastic polyurethane are promising candidates for detecting various human motions and monitoring the mass of some kinetic objects.


Sign in / Sign up

Export Citation Format

Share Document