scholarly journals State-independent test of quantum contextuality with either single photons or coherent light

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dengke Qu ◽  
Kunkun Wang ◽  
Lei Xiao ◽  
Xiang Zhan ◽  
Peng Xue

AbstractContextuality is a phenomenon at the heart of quantum mechanics different from classical behavior and has been recently identified as a resource in quantum information processing. Experimental demonstration of contextuality is thus an important goal. We experimentally demonstrate a test of state-independent contextuality in a four-dimensional Hilbert space with single photons and violate the inequality by at least 387 standard deviations. Despite imperfections and possible measurement disturbance, our results cannot be explained in non-contextual models. We also provide a theoretical analysis of a test of contextuality with a coherent light field and show how the definitions affect the emergence of non-classical correlations. Our result sheds new light on the conflict between quantum and classical physics.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kuppusamy Senthil Kumar ◽  
Diana Serrano ◽  
Aline M. Nonat ◽  
Benoît Heinrich ◽  
Lydia Karmazin ◽  
...  

AbstractThe success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ion (REI)-based molecular systems, whose quantum properties could be tuned taking advantage of molecular engineering strategies, are one of the systems actively pursued for the implementation of QIP schemes. Herein, we demonstrate the efficient polarization of ground-state nuclear spins—a fundamental requirement for all-optical spin initialization and addressing—in a binuclear Eu(III) complex, featuring inhomogeneously broadened 5D0 → 7F0 optical transition. At 1.4 K, long-lived spectral holes have been burnt in the transition: homogeneous linewidth (Γh) = 22 ± 1 MHz, which translates as optical coherence lifetime (T2opt) = 14.5 ± 0.7 ns, and ground-state spin population lifetime (T1spin) = 1.6 ± 0.4 s have been obtained. The results presented in this study could be a progressive step towards the realization of molecule-based coherent light-spin QIP interfaces.


Author(s):  
Lei Tang ◽  
Keyu Xia

Optical isolation is important for protecting a laser from damage due to the detrimental back reflection of light. It typically relies on breaking Lorentz reciprocity and normally is achieved via the Faraday magneto-optical effect, requiring a strong external magnetic field. Single-photon isolation, the quantum counterpart of optical isolation, is the key functional component in quantum information processing, but its realization is challenging. In this chapter, we present all-optical schemes for isolating the backscattering from single photons. In the first scheme, we show the single-photon isolation can be realized by using a chiral quantum optical system, in which a quantum emitter asymmetrically couples to nanowaveguide modes or whispering-gallery modes with high optical chirality. Secondly, we propose a chiral optical Kerr nonlinearity to bypass the so-called dynamical reciprocity in nonlinear optics and then achieve room-temperature photon isolation with low insertion loss. The concepts we present may pave the way for quantum information processing in an unconventional way.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Förtsch ◽  
Josef U. Fürst ◽  
Christoffer Wittmann ◽  
Dmitry Strekalov ◽  
Andrea Aiello ◽  
...  

1992 ◽  
Vol 4 (1) ◽  
pp. 37-41
Author(s):  
V. V. Kotlyar ◽  
V. A. Soifer ◽  
S. V. Filippov

2016 ◽  
Vol 2 (4) ◽  
pp. e1600036 ◽  
Author(s):  
Daniel Tiarks ◽  
Steffen Schmidt ◽  
Gerhard Rempe ◽  
Stephan Dürr

A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.


2021 ◽  
Author(s):  
Sultan Abdul Wadood ◽  
Kevin Liang ◽  
Yiyu Zhou ◽  
Jing Yang ◽  
Miguel Alonso ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Toshiyuki Ihara ◽  
Shigehito Miki ◽  
Toshiki Yamada ◽  
Takahiro Kaji ◽  
Akira Otomo ◽  
...  

Abstract The realization of high-quality quantum emitters that can operate at room temperature is important for accelerating the application of quantum technologies, such as quantum communication, quantum information processing, and quantum metrology. In this work, we study the photon-antibunching properties on room-temperature emission from individual colloidal quantum dots (CQDs) using superconducting-nanowire single-photon detectors and temporal filtering of the photoluminescence decay curve. We find that high single-photon purities and high photon-generation rates can be simultaneously achieved by removing the signals originating from the sequential two-photon emission of biexcitons created by multiple excitation pulses. We successfully demonstrate that the ultrahigh performance of the room-temperature single-photon sources showing g(2)(0) ≪ 10−2 can be confirmed by the ultralow-dark-count detection of the temporally purified single photons. These findings provide strong evidence for the attractiveness of CQDs as candidates for high-quality room-temperature quantum light sources.


Sign in / Sign up

Export Citation Format

Share Document