scholarly journals Protection against a chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold

npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Delia F. Tifrea ◽  
Sukumar Pal ◽  
Jeff Fairman ◽  
Paola Massari ◽  
Luis M. de la Maza
Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Delia F. Tifrea ◽  
Wei He ◽  
Sukumar Pal ◽  
Angela C. Evans ◽  
Sean F. Gilmore ◽  
...  

Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10–25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.


2013 ◽  
Vol 81 (5) ◽  
pp. 1741-1750 ◽  
Author(s):  
Delia F. Tifrea ◽  
Pooja Ralli-Jain ◽  
Sukumar Pal ◽  
Luis M. de la Maza

ABSTRACTTo determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) fromChlamydia trachomatisserovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) orChlamydia muridarumstrain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. withNeisseria gonorrhoeaerecombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 104inclusion-forming units (IFU) ofC. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP ofC. muridarumorC. trachomatisD, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%;P< 0.05). The median number of IFU recovered from the lungs of mice immunized withC. muridarumrMOMP was 0.13 × 106. The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 106, 7.56 × 106, and 11.94 × 106IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than theNg-rPorB (40 × 106)- or MEM-0 (70 × 106)-immunized mice (P< 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologousChlamydiaserovars.


2013 ◽  
Vol 15 (13) ◽  
pp. 920-927 ◽  
Author(s):  
Delia F. Tifrea ◽  
Sukumar Pal ◽  
Deana N. Toussi ◽  
Paola Massari ◽  
Luis M. de la Maza

Sign in / Sign up

Export Citation Format

Share Document