neisseria lactamica
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 9)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
pp. 387-404
Author(s):  
Adam P. Dale ◽  
Diane F. Gbesemete ◽  
Robert C. Read ◽  
Jay R. Laver

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2021 ◽  
Vol 27 (1) ◽  
pp. 65-69
Author(s):  
Haruka Takei ◽  
Noriko Takeuchi ◽  
Tadashi Hoshino ◽  
Misako Ohkusu ◽  
Shunsuke Segawa ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 661 ◽  
Author(s):  
Louise A. Rollins-Smith ◽  
Patricia B. Smith ◽  
Anna M. Ledeczi ◽  
Julia M. Rowe ◽  
Laura K. Reinert

Although acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is a manageable disease for many, it is still a source of significant morbidity and economic hardship for many others. The predominant mode of transmission of HIV/AIDS is sexual intercourse, and measures to reduce transmission are needed. Previously, we showed that caerin 1 antimicrobial peptides (AMPs) originally derived from Australian amphibians inhibited in vitro transmission of HIV at relatively low concentrations and had low toxicity for T cells and an endocervical cell line. The use of AMPs as part of microbicidal formulations would expose the vaginal microbiome to these agents and cause potential harm to protective lactobacilli. Here, we tested the effects of caerin 1 peptides and their analogs on the viability of two species of common vaginal lactobacilli (Lactobacillus rhamnosus and Lactobacillus crispatus). Several candidate peptides had limited toxicity for the lactobacilli at a range of concentrations that would inhibit HIV. Three AMPs were also tested for their ability to inhibit growth of Neisseria lactamica, a close relative of the sexually transmissible Neisseria gonorrhoeae. Neisseria lactamica was significantly more sensitive to the AMPs than the lactobacilli. Thus, several candidate AMPs have the capacity to inhibit HIV and possible N. gonorrhoeae transmission at concentrations that are significantly less harmful to the resident lactobacilli.


2020 ◽  
Vol 12 (2) ◽  
pp. 3938-3950
Author(s):  
Barakat A Al Suwayyid ◽  
Leah Rankine-Wilson ◽  
David J Speers ◽  
Michael J Wise ◽  
Geoffrey W Coombs ◽  
...  

Abstract Neisseria spp. possess four genogroups of filamentous prophages, termed Nf1 to 4. A filamentous bacteriophage from the Nf1 genogroup termed meningococcal disease-associated phage (MDA φ) is associated with clonal complexes of Neisseria meningitidis that cause invasive meningococcal disease. Recently, we recovered an isolate of Neisseria gonorrhoeae (ExNg63) from a rare case of gonococcal meningitis, and found that it possessed a region with 90% similarity to Nf1 prophages, specifically, the meningococcal MDA φ. This led to the hypothesis that the Nf1 prophage may be more widely distributed amongst the genus Neisseria. An analysis of 92 reference genomes revealed the presence of intact Nf1 prophages in the commensal species, Neisseria lactamica and Neisseria cinerea in addition to the pathogen N. gonorrhoeae. In N. gonorrhoeae, Nf1 prophages had a restricted distribution but were present in all representatives of MLST ST1918. Of the 160 phage integration sites identified, only one common insertion site was found between one isolate of N. gonorrhoeae and N. meningitidis. There was an absence of any obvious conservation of the receptor for prophage entry, PilE, suggesting that the phage may have been obtained by natural transformation. An examination of the restriction modification systems and mutated mismatch repair systems with prophage presence suggested that there was no obvious preference for these hosts. A timed phylogeny inferred that N. meningitidis was the donor of the Nf1 prophages in N. lactamica and N. gonorrhoeae. Further work is required to determine whether Nf1 prophages are active and can act as accessory colonization factors in these species.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Anish Pandey ◽  
David W. Cleary ◽  
Jay R. Laver ◽  
Andrew Gorringe ◽  
Alice M. Deasy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document