scholarly journals Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice

Vaccine ◽  
2014 ◽  
Vol 32 (36) ◽  
pp. 4672-4680 ◽  
Author(s):  
Hong Yu ◽  
Karuna P. Karunakaran ◽  
Xiaozhou Jiang ◽  
Robert C. Brunham
2010 ◽  
Vol 78 (10) ◽  
pp. 4374-4383 ◽  
Author(s):  
Christina M. Farris ◽  
Sandra G. Morrison ◽  
Richard P. Morrison

ABSTRACT Despite effective antimicrobial chemotherapy, control of Chlamydia trachomatis urogenital infection will likely require a vaccine. We have assessed the protective effect of an outer membrane protein-based vaccine by using a murine model of chlamydial genital infection. Female mice were first vaccinated with Chlamydia muridarum major outer membrane protein (MOMP) plus the adjuvants CpG-1826 and Montanide ISA 720; then they were challenged with C. muridarum. Vaccinated mice shed 2 log10 to 3 log10 fewer inclusion-forming units (IFU) than ovalbumin-vaccinated or naïve animals, resolved infection sooner, and had a lower incidence of hydrosalpinx. To determine the relative contribution of T cells to vaccine-induced protection, mice were vaccinated, depleted of CD4+ or CD8+ T cells, and then challenged vaginally with C. muridarum. Depletion of CD4+ T cells, but not depletion of CD8+ T cells, diminished vaccine-induced protection, with CD4-depleted mice shedding 2 log10 to 4 log10 more IFU than CD8-depleted or nondepleted mice. The contribution of antibodies to vaccine-induced protection was demonstrated by the absence of protective immunity in vaccinated B-cell-deficient mice and by a 2 log10 to 3 log10 decrease in bacterial shedding by mice passively administered an anti-MOMP serum. Thus, optimal protective immunity in this model of vaccine-induced protection depends on contributions from both CD4+ T cells and antibody.


Immunobiology ◽  
2011 ◽  
Vol 216 (1-2) ◽  
pp. 152-163 ◽  
Author(s):  
Alexandra Bermudez-Fajardo ◽  
Anne-Katrien Stark ◽  
Rehab El-Kadri ◽  
Manuel L. Penichet ◽  
Katharina Hölzle ◽  
...  

2013 ◽  
Vol 81 (5) ◽  
pp. 1741-1750 ◽  
Author(s):  
Delia F. Tifrea ◽  
Pooja Ralli-Jain ◽  
Sukumar Pal ◽  
Luis M. de la Maza

ABSTRACTTo determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) fromChlamydia trachomatisserovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) orChlamydia muridarumstrain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. withNeisseria gonorrhoeaerecombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 104inclusion-forming units (IFU) ofC. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP ofC. muridarumorC. trachomatisD, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%;P< 0.05). The median number of IFU recovered from the lungs of mice immunized withC. muridarumrMOMP was 0.13 × 106. The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 106, 7.56 × 106, and 11.94 × 106IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than theNg-rPorB (40 × 106)- or MEM-0 (70 × 106)-immunized mice (P< 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologousChlamydiaserovars.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sukumar Pal ◽  
Maria I. Cruz-Fisher ◽  
Chunmei Cheng ◽  
Jennifer R. Carmichael ◽  
Delia F. Tifrea ◽  
...  

Abstract Implementation of a vaccine is likely the best approach to curtail Chlamydia trachomatis infections. The aim of this study was to determine the ability of a vaccine formulated with the recombinant major outer membrane protein (MOMP) and Th1 and Th2 adjuvants, delivered by combinations of systemic and mucosal routes, to elicit long-term protection in mice against a genital challenge with Chlamydia muridarum. As a negative control, mice were vaccinated with the recombinant Neisseria gonorrhoeae porinB, and the positive control group was immunized with C. muridarum live elementary bodies (EB). The four vaccines formulated with MOMP, as determined by the titers of IgG and neutralizing antibodies in serum, proliferative responses of T-cells stimulated with EB and levels of IFN-γ in the supernatants, elicited robust humoral and cellular immune responses over a 6-month period. Groups of mice were challenged genitally at 60, 120, or 180 days postimmunization. Based on the number of mice with positive vaginal cultures, number of positive cultures, length of time of shedding, and number of inclusion forming units recovered, MOMP vaccinated groups were significantly protected. To assess fertility, when the vaginal cultures became negative, female mice were caged with male mice and the outcome of the pregnancy evaluated. As determined by the number of pregnant mice and the number of embryos, two of the vaccine formulations protected mice up to 180 days postimmunization. To our knowledge this is the first subunit of Chlamydia vaccine that has elicited in mice significant long-term protection against a genital challenge.


2000 ◽  
Vol 68 (12) ◽  
pp. 6798-6806 ◽  
Author(s):  
Joseph U. Igietseme ◽  
Andrew Murdin

ABSTRACT The significance of delivery systems in modern vaccine design strategies is underscored by the fact that a promising vaccine formulation may fail in vivo due to an inappropriate delivery method. We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) of Chlamydia trachomatis delivered with the lipophilic immune response-stimulating complexes (ISCOMs) as a vehicle with adjuvant properties, in a murine model of chlamydial genital infection. Immunocompetent BALB/c mice were immunized intranasally (IN) or intramuscularly (IM) with MOMP, MOMP-ISCOMs, and live or heat-inactivated C. trachomatis serovar D. The level of local genital mucosal Th1 response was measured by assaying for antigen-specific Th1 cell induction and recruitment into the genital mucosa at different times after immunization. Immunization with MOMP-ISCOMs by the IM route induced the greatest and fastest local genital mucosal Th1 response, first detectable 2 weeks after exposure. Among the other routes and regimens tested, only IN immunization with MOMP-ISCOMs induced detectable and statistically significant levels of local genital mucosal Th1 response during the 8-week test period (P < 0.001). In addition, when T cells from immunized mice were adoptively transferred into syngeneic naive animals and challenged intravaginally with Chlamydia, recipients of IM immunization of MOMP-ISCOMs cleared their infection within 1 week and were resistant to reinfection. Animals that received IN immunization of MOMP-ISCOMs were partially protected, shedding fewer chlamydiae than did control mice. Altogether, the results suggested that IM delivery of MOMP-ISCOMs may be a suitable vaccine regimen potentially capable of inducing protective mucosal immunity against C. trachomatisinfection.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Delia F. Tifrea ◽  
Wei He ◽  
Sukumar Pal ◽  
Angela C. Evans ◽  
Sean F. Gilmore ◽  
...  

Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10–25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.


Sign in / Sign up

Export Citation Format

Share Document