scholarly journals Probable detection of an eruptive filament from a superflare on a solar-type star

2021 ◽  
Author(s):  
Kosuke Namekata ◽  
Hiroyuki Maehara ◽  
Satoshi Honda ◽  
Yuta Notsu ◽  
Soshi Okamoto ◽  
...  

AbstractSolar flares are often accompanied by filament/prominence eruptions (~104 K and ~1010−11 cm−3), sometimes leading to coronal mass ejections that directly affect the Earth’s environment1,2. ‘Superflares’ are found on some active solar-type (G-type main-sequence) stars3–5, but the filament eruption–coronal mass ejection association has not been established. Here we show that our optical spectroscopic observation of the young solar-type star EK Draconis reveals evidence for a stellar filament eruption associated with a superflare. This superflare emitted a radiated energy of 2.0 × 1033 erg, and a blueshifted hydrogen absorption component with a high velocity of −510 km s−1 was observed shortly afterwards. The temporal changes in the spectra strongly resemble those of solar filament eruptions. Comparing this eruption with solar filament eruptions in terms of the length scale and velocity strongly suggests that a stellar coronal mass ejection occurred. The erupted filament mass of 1.1 × 1018 g is ten times larger than those of the largest solar coronal mass ejections. The massive filament eruption and an associated coronal mass ejection provide the opportunity to evaluate how they affect the environment of young exoplanets/the young Earth6 and stellar mass/angular momentum evolution7.

2015 ◽  
Vol 11 (S320) ◽  
pp. 224-229
Author(s):  
Dmitry V. Bisikalo ◽  
Alexander A. Cherenkov ◽  
Pavel V. Kaygorodov

AbstractWe consider the influence of a coronal mass ejection (CME) of a solar type star on the mass loss rate of a hot Jupiter exoplanet. We have conducted 3D numerical gas-dynamic simulations of the planet's atmosphere that interacts with CME. Using the results of these simulations we have estimated the specific parameters that influence the mass loss rate. Based on the assumption that CME totally sweeps away part of the planet's gaseous envelope located outside the Roche lobe we estimated the maximum mass loss rate. Finally, we have considered the dependence of mass loss rate on the frequency of CMEs in course of star's evolution.


Author(s):  
Hugh S. Hudson

The Carrington event in 1859, a solar flare with an associated geomagnetic storm, has served as a prototype of possible superflare occurrence on the Sun. Recent geophysical (14C signatures in tree rings) and precise time-series photometry [the bolometric total solar irradiance (TSI) for the Sun, and the broadband photometry from Kepler and Transiting Exoplanet Survey Satellite, for the stars] have broadened our perspective on extreme events and the threats that they pose for Earth and for Earth-like exoplanets. This review assesses the mutual solar and/or stellar lessons learned and the status of our theoretical understanding of the new data, both stellar and solar, as they relate to the physics of the Carrington event. The discussion includes the event's implied coronal mass ejection, its potential “solar cosmic ray” production, and the observed geomagnetic disturbances based on the multimessenger information already available in that era. Taking the Carrington event as an exemplar of the most extreme solar event, and in the context of our rich modern knowledge of solar flare and/or coronal mass ejection events, we discuss the aspects of these processes that might be relevant to activity on solar-type stars, and in particular their superflares. ▪ The Carrington flare of 1859, though powerful, did not significantly exceed the magnitudes of the greatest events observed in the modern era. ▪ Stellar “superflare” events on solar-type stars may share common paradigms, and also suggest the possibility of a more extreme solar event at some time in the future. ▪ We benefit from comparing the better-known microphysics of solar flares and CMEs with the diversity of related stellar phenomena. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1989 ◽  
Vol 104 (2) ◽  
pp. 239-242
Author(s):  
V.K. Verma ◽  
M.C. Pande

AbstractThe coronal mass ejection (CME) data and the data for coronal holes for the period 1979-1982 are compared locationwise. Out of 79 CMEs whose locations and spans are known, 48 (61%) CMEs are associated with coronal holes. We make a tentative suggestion that probably the mass ejected during solar flares and active prominences may move along the open magnetic field of the coronal holes and appear as CMEs.


2008 ◽  
Vol 4 (T27A) ◽  
pp. 181-182
Author(s):  
Michel Mayor ◽  
Alan P. Boss ◽  
Paul R. Butler ◽  
William B. Hubbard ◽  
Philip A. Ianna ◽  
...  

Commission 53 on Extrasolar Planets was created at the 2006 Prague General Assembly of the IAU, in recognition of the outburst of astronomical progress in the field of extrasolar planet discovery, characterization, and theoretical work that has occurred since the discovery of the pulsar planets in 1992 and the discovery of the first planet in orbit around a solar-type star in 1995. Commission 53 is the logical successor to the IAU Working Group on Extrasolar Planets WG-ESP, which ended its six years of existence in August 2006. The founding president of Commission 53 is Michael Mayor, in honor of his seminal contributions to this new field of astronomy. The vice-president is Alan Boss, the former chair of the WG-ESP, and the members of the Commission 53 Organizing Committee are the other former members of the WG-ESP.


2005 ◽  
Vol 618 (2) ◽  
pp. 926-938 ◽  
Author(s):  
C. I. Short ◽  
P. H. Hauschildt
Keyword(s):  

2011 ◽  
Vol 738 (2) ◽  
pp. 191 ◽  
Author(s):  
B. M. Bein ◽  
S. Berkebile-Stoiser ◽  
A. M. Veronig ◽  
M. Temmer ◽  
N. Muhr ◽  
...  

2017 ◽  
Vol 605 ◽  
pp. A19 ◽  
Author(s):  
S. Orlando ◽  
F. Favata ◽  
G. Micela ◽  
S. Sciortino ◽  
A. Maggio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document