A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data

Author(s):  
Md Tauhidul Islam ◽  
Lei Xing
Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

2022 ◽  
pp. 146808742110707
Author(s):  
Aran Mohammad ◽  
Reza Rezaei ◽  
Christopher Hayduk ◽  
Thaddaeus Delebinski ◽  
Saeid Shahpouri ◽  
...  

The development of internal combustion engines is affected by the exhaust gas emissions legislation and the striving to increase performance. This demands for engine-out emission models that can be used for engine optimization for real driving emission controls. The prediction capability of physically and data-driven engine-out emission models is influenced by the system inputs, which are specified by the user and can lead to an improved accuracy with increasing number of inputs. Thereby the occurrence of irrelevant inputs becomes more probable, which have a low functional relation to the emissions and can lead to overfitting. Alternatively, data-driven methods can be used to detect irrelevant and redundant inputs. In this work, thermodynamic states are modeled based on 772 stationary measured test bench data from a commercial vehicle diesel engine. Afterward, 37 measured and modeled variables are led into a data-driven dimensionality reduction. For this purpose, approaches of supervised learning, such as lasso regression and linear support vector machine, and unsupervised learning methods like principal component analysis and factor analysis are applied to select and extract the relevant features. The selected and extracted features are used for regression by the support vector machine and the feedforward neural network to model the NOx, CO, HC, and soot emissions. This enables an evaluation of the modeling accuracy as a result of the dimensionality reduction. Using the methods in this work, the 37 variables are reduced to 25, 22, 11, and 16 inputs for NOx, CO, HC, and soot emission modeling while maintaining the accuracy. The features selected using the lasso algorithm provide more accurate learning of the regression models than the extracted features through principal component analysis and factor analysis. This results in test errors RMSETe for modeling NOx, CO, HC, and soot emissions 19.22 ppm, 6.46 ppm, 1.29 ppm, and 0.06 FSN, respectively.


Author(s):  
Wenzhen Li ◽  
Qirui Wu ◽  
Zhonghan Peng ◽  
Kai Chen ◽  
Hui Zhang ◽  
...  

2019 ◽  
Vol 21 (4) ◽  
pp. 1182-1195
Author(s):  
Andrew C Liu ◽  
Krishna Patel ◽  
Ramya Dhatri Vunikili ◽  
Kipp W Johnson ◽  
Fahad Abdu ◽  
...  

Abstract Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.


Author(s):  
Rajmund L. Somorjai ◽  
Murray E. Alexander ◽  
Richard Baumgartner ◽  
Stephanie Booth ◽  
Christopher Bowman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document