Evolutionary demographic models reveal the strength of purifying selection on susceptibility alleles to late-onset diseases

Author(s):  
Samuel Pavard ◽  
Christophe F. D. Coste
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Scott A. Lujan ◽  
Matthew J. Longley ◽  
Margaret H. Humble ◽  
Christopher A. Lavender ◽  
Adam Burkholder ◽  
...  

Abstract Background Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. Results To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. Conclusions These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.


2022 ◽  
Author(s):  
Mina Ohadi ◽  
Safoura Khamse ◽  
Samira Alizadeh ◽  
Stephan H Bernhart ◽  
Hossein Afshar ◽  
...  

Abstract The human SBF1 (SET binding factor 1) gene, alternatively known as MTMR5, is predominantly expressed in the brain, and its epigenetic dysregulation is linked to late-onset neurocognitive disorders (NCDs), such as Alzheimer’s disease. This gene contains a (GCC)-repeat at the interval between +1 and +60 of the transcription start site (SBF1-202 ENST00000380817.8). Sequencing of the SBF1 (GCC)-repeat in a sample of 542 Iranian individuals, consisting of late-onset NCDs (N=260) and controls (N=282) revealed a predominantly bi-allelic locus for this STR, consisting of 8 and 9 repeats, with allele frequencies ranging from 0.39 to 0.55, and four other alleles with frequencies of <0.03 across the two groups. Overall heterozygosity for the observed alleles was significantly less than expected in the NCD and control groups, at 22.3% and 16.31%, respectively (p=0.000). Specifically, the heterozygous 8/9 genotype was significantly less than expected in both case and control groups (Hardy-Weinberg disequilibrium, p=0.000), and significantly enriched in the NCD group (Yates corrected p=0.001). Skewed heterozygous genotypes were also detected for other allele combinations, such as 6/8 vs 6/9 across groups (p=0.000). Bioinformatics studies revealed that the number of (GCC)-repeats may change the RNA secondary structure and interaction sites across human exon 1. This STR was specifically expanded beyond 2-repeats in primates. In conclusion, we report a novel biological phenomenon in which there is indication of purifying selection against heterozygous genotypes at a STR locus in human, and skewed genotype compartment in late-onset NCD vs. controls. In view of the location of this STR in the 5′ UTR, RNA/RNA or RNA/DNA heterodimer formation of the involved genotypes and possible deleterious downstream events should be considered.


2021 ◽  
Author(s):  
Oyediran Akinrinade ◽  
Jane Lougheed ◽  
Tapas Mondal ◽  
John Smythe ◽  
Luis Altamirano-Diaz ◽  
...  

Aims: Cardiomyopathy is a clinically and genetically heterogeneous disorder with age and sex-related differences in severity and outcomes. The aim of our study was to identify age and sex-related differences in the genetic architecture of cardiomyopathy. Methods and Results: We analyzed whole genome sequence data from 471 pediatric and 926 adult cardiomyopathy patients from our Heart Centre Biobank and from the Genomics England cohort. Overall yield of rare deleterious coding variants was higher in pediatric compared to adult onset cardiomyopathy, but not different by sex. MYH7, TNNT2, MYL3, and VCL variants were more frequent in pediatric patients; TTN and OBSCN variants were more frequent in adult patients, with MYH7 (Odds ratio 3.6; CI 2.1-6.3) and OBSCN (Odds ratio 5.5, CI 2.0-21.4) remaining significant after adjusting for multiple testing. Variants in early-onset cardiomyopathy clustered in highly constrained coding regions compared to those in adult patients (p=3.9x10-3). There were also differences between pediatric and adult patients in variant location within MYH7 and TTN genes. When analyzed by sex, variants in female compared to male patients were in more highly constrained coding regions (p=0.002). Conclusion: Our findings highlight under-appreciated genetic differences in early versus late onset cardiomyopathy. Variants in childhood cardiomyopathy and in female patients were in highly constrained coding regions of the genome suggesting greater deleterious effects and strong purifying selection in the general population. Knowledge of the affected gene, variant location within the gene, and variant constraint scores may be useful in predicting early versus late onset cardiomyopathy.


2006 ◽  
Vol 37 (6) ◽  
pp. 6
Author(s):  
PATRICE WENDLING
Keyword(s):  

2003 ◽  
Author(s):  
J. M. Silverman ◽  
C. J. Smith ◽  
D. B. Marin ◽  
R. C. Mohs ◽  
C. B. Propper

2010 ◽  
Author(s):  
Lisabeth F. DiLalla ◽  
S. J. W. Biebl ◽  
S. S. Long ◽  
S. Gheyara ◽  
K. Otto

Sign in / Sign up

Export Citation Format

Share Document