scholarly journals Evidence for a higher-order topological insulator in a three-dimensional material built from van der Waals stacking of bismuth-halide chains

2021 ◽  
Author(s):  
Ryo Noguchi ◽  
Masaru Kobayashi ◽  
Zhanzhi Jiang ◽  
Kenta Kuroda ◽  
Takanari Takahashi ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael R. Sinko ◽  
Sergio C. de la Barrera ◽  
Olivia Lanes ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

1994 ◽  
Vol 340 ◽  
Author(s):  
L. E. Rumaner ◽  
F.S. Ohuchi

ABSTRACTAlthough heteroepitaxy of lattice-matched and lattice-mismatched materials leading to artificially structured materials has resulted in impressive performance in various electronics devices, material combinations are usually limited by lattice matching constraints. A new concept for fabricating material systems using the atomically abrupt and low dimensional nature of layered materials, called van der Waals epitaxy (VDWE), has been developed. GaSe (Eg = 2.1 eV) has been deposited on the three dimensional surface of GaAs (111) using a molecular beam deposition system. GaSe was evaporated from a single Knudsen source, impinging on a heated substrate. Even with a lattice mismatch of 6% between the substrate and the growing film, good quality single crystal films were grown as determined by RHEED. The films have further been analyzed using a complementary combination of XPS and X-ray reflectivity.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Kristof Moors ◽  
Peter Schüffelgen ◽  
Daniel Rosenbach ◽  
Tobias Schmitt ◽  
Thomas Schäpers ◽  
...  

2001 ◽  
Vol 09 (04) ◽  
pp. 1259-1286 ◽  
Author(s):  
MIGUEL R. VISBAL ◽  
DATTA V. GAITONDE

A high-order compact-differencing and filtering algorithm, coupled with the classical fourth-order Runge–Kutta scheme, is developed and implemented to simulate aeroacoustic phenomena on curvilinear geometries. Several issues pertinent to the use of such schemes are addressed. The impact of mesh stretching in the generation of high-frequency spurious modes is examined and the need for a discriminating higher-order filter procedure is established and resolved. The incorporation of these filtering techniques also permits a robust treatment of outflow radiation condition by taking advantage of energy transfer to high-frequencies caused by rapid mesh stretching. For conditions on the scatterer, higher-order one-sided filter treatments are shown to be superior in terms of accuracy and stability compared to standard explicit variations. Computations demonstrate that these algorithmic components are also crucial to the success of interface treatments created in multi-domain and domain-decomposition strategies. For three-dimensional computations, special metric relations are employed to assure the fidelity of the scheme in highly curvilinear meshes. A variety of problems, including several benchmark computations, demonstrate the success of the overall computational strategy.


2017 ◽  
Vol 21 (6) ◽  
pp. 1820-1842
Author(s):  
Wu Zhen ◽  
Ma Rui ◽  
Chen Wanji

This paper will try to overcome two difficulties encountered by the C0 three-node triangular element based on the displacement-based higher-order models. They are (i) transverse shear stresses computed from constitutive equations vanish at the clamped edges, and (ii) it is difficult to accurately produce the transverse shear stresses even using the integration of the three-dimensional equilibrium equation. Invalidation of the equilibrium equation approach ought to attribute to the higher-order derivations of displacement parameters involved in transverse shear stress components after integrating three-dimensional equilibrium equation. Thus, the higher-order derivatives of displacement parameters will be taken out from transverse shear stress field by using the three-field Hu–Washizu variational principle before the finite element procedure is implemented. Therefore, such method is named as the preprocessing method for transverse shear stresses in present work. Because the higher-order derivatives of displacement parameters have been eliminated, a C0 three-node triangular element based on the higher-order zig-zag theory can be presented by using the linear interpolation function. Performance of the proposed element is numerically evaluated by analyzing multilayered sandwich plates with different loading conditions, lamination sequences, material constants and boundary conditions, and it can be found that the present model works well in the finite element framework.


Sign in / Sign up

Export Citation Format

Share Document