Consistent trade-offs in fungal trait expression across broad spatial scales

2019 ◽  
Vol 4 (5) ◽  
pp. 846-853 ◽  
Author(s):  
Daniel S. Maynard ◽  
Mark A. Bradford ◽  
Kristofer R. Covey ◽  
Daniel Lindner ◽  
Jessie Glaeser ◽  
...  
Keyword(s):  
2016 ◽  
Vol 122 ◽  
pp. 111-120 ◽  
Author(s):  
Stephan Klasen ◽  
Katrin M. Meyer ◽  
Claudia Dislich ◽  
Michael Euler ◽  
Heiko Faust ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Charlotte Marcinko ◽  
Robert Nicholls ◽  
Tim Daw ◽  
Sugata Hazra ◽  
Craig Hutton ◽  
...  

<p>The United Nations Sustainable Development Goals (SDGs) and their corresponding targets are significantly interconnected, with many interactions, synergies and trade-offs between individual goals across multiple temporal and spatial scales.  We propose a framework for the Integrated Assessment Modelling (IAM) of a complex deltaic socio-ecological system in order to analyse such SDG interactions. We focus on the Sundarbans Biosphere Reserve (SBR), India within the Ganges-Brahmaputra-Meghna Delta. It is densely populated with 4.4 million people (2011), high levels of poverty and a strong dependence on rural livelihoods. It is only 50 km from the growing megacity of Kolkata (about 15 million people in 2020). The area also includes the Indian portion of the world’s largest mangrove forest – the Sundarbans – hosting the iconic Bengal Tiger. Like all deltaic systems, this area is subject to multiple drivers of environmental change operating across different scales. The IAM framework is designed to investigate current and future trends in socio-environmental change and explore associated policy impacts, considering a broad range of sub-thematic SDG indicators. Integration is achieved through the soft coupling of multiple sub-models, knowledge and data of relevant environmental and socio-economic processes.  The following elements are explicitly considered: (1) agriculture; (2) aquaculture; (3) mangroves; (4) fisheries; and (5) multidimensional poverty. Key questions that can be addressed include the implications of changing monsoon patterns, trade-offs between agriculture and aquaculture, or the future of the Sundarbans mangroves under sea-level rise and different management strategies, including trade-offs with land use to the north.  The novel high-resolution analysis of SDG interactions allowed by the IAM will provide stakeholders and policy makers the opportunity to prioritize and explore the SDG targets that are most relevant to the SBR and provide a foundation for further integrated analysis.</p>


2018 ◽  
Vol 115 (47) ◽  
pp. 12069-12074 ◽  
Author(s):  
Samuel G. Roy ◽  
Emi Uchida ◽  
Simone P. de Souza ◽  
Ben Blachly ◽  
Emma Fox ◽  
...  

Aging infrastructure and growing interests in river restoration have led to a substantial rise in dam removals in the United States. However, the decision to remove a dam involves many complex trade-offs. The benefits of dam removal for hazard reduction and ecological restoration are potentially offset by the loss of hydroelectricity production, water supply, and other important services. We use a multiobjective approach to examine a wide array of trade-offs and synergies involved with strategic dam removal at three spatial scales in New England. We find that increasing the scale of decision-making improves the efficiency of trade-offs among ecosystem services, river safety, and economic costs resulting from dam removal, but this may lead to heterogeneous and less equitable local-scale outcomes. Our model may help facilitate multilateral funding, policy, and stakeholder agreements by analyzing the trade-offs of coordinated dam decisions, including net benefit alternatives to dam removal, at scales that satisfy these agreements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eliezer Gurarie ◽  
Sriya Potluri ◽  
George Christopher Cosner ◽  
Robert Stephen Cantrell ◽  
William F. Fagan

Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 422
Author(s):  
Ramon Felipe Bicudo da Silva ◽  
Mateus Batistella ◽  
James D. A. Millington ◽  
Emilio Moran ◽  
Luiz A. Martinelli ◽  
...  

Agricultural systems are heterogeneous across temporal and spatial scales. Although much research has investigated farm size and economic output, the synergies and trade-offs across various agricultural and socioeconomic variables are unclear. This study applies a GIS-based approach to official Brazilian census data (Agricultural Censuses of 1995, 2006, and 2017) and surveys at the municipality level to (i) evaluate changes in the average soybean farm size across the country and (ii) compare agricultural and socioeconomic outcomes (i.e., soybean yield, agricultural production value, crop production diversity, and rural labor employment) relative to the average soybean farm size. Statistical tests (e.g., Kruskal–Wallis tests and Spearman’s correlation) were used to analyze variable outcomes in different classes of farm sizes and respective Agricultural Censuses. We found that agricultural and socioeconomic outcomes are spatially correlated with soybean farm size class. Therefore, based on the concepts of trade-offs and synergies, we show that municipalities with large soybean farm sizes had larger trade-offs (e.g., larger farm size was associated with lower crop diversity), while small and medium ones manifest greater synergies. These patterns are particularly strong for analysis using the Agricultural Census of 2017. Trade-off/synergy analysis across space and time is key for supporting long-term strategies aiming at alleviating unemployment and providing sustainable food production, essential to achieve the UN Sustainable Development Goals.


2017 ◽  
Vol 95 (3) ◽  
pp. 203-212 ◽  
Author(s):  
Jared F. Duquette ◽  
Jerrold L. Belant ◽  
Clay M. Wilton ◽  
Nicholas Fowler ◽  
Brittany W. Waller ◽  
...  

The spatial scales at which animals make behavioral trade-offs is assumed to relate to the scales at which factors most limiting resources and increasing mortality risk occur. We used global positioning system collar locations of 29 reproductive-age female black bears (Ursus americanus Pallas, 1780) in three states to assess resource selection relative to bear population-specific density, an index of vegetation productivity, riparian corridors, or two road classes of and within home ranges during spring–summer of 2009–2013. Female resource selection was best explained by functional responses to vegetation productivity across nearly all populations and spatial scales, which appeared to be influenced by variation in bear density (i.e., intraspecific competition). Behavioral trade-offs were greatest at the landscape scale, but except for vegetation productivity, were consistent for populations across spatial scales. Females across populations selected locations nearer to tertiary roads, but females in Michigan and Mississippi selected main roads and avoided riparian corridors, whereas females in Missouri did the opposite, suggesting population-level trade-offs between resource (e.g., food) acquisition and mortality risks (e.g., vehicle collisions). Our study emphasizes that female bear population-level resource selection can be influenced by multiple spatially dependent factors, and that scale-dependent functional behavior should be identified for management of bears across their range.


2008 ◽  
Vol 86 (11) ◽  
pp. 1280-1288 ◽  
Author(s):  
C. Fernández-Montraveta ◽  
M. Cuadrado

Habitat quality affects many components of animal fitness and animals are expected to be distributed in the space accordingly. Mismatch between habitat preferences and fitness may relate to scale-dependent effects and trade-offs between costs and benefits of moving to high-quality habitats. We investigated the effects of habitat quality and habitat selection in Donacosa merlini Alderweireldt and Jocqué, 1991, a burrowing wolf spider included in the Spanish Invertebrates Red Data Book. Particularly, we compared burrow size and density and analysed the relationship between burrow presence and vegetation at two different scales. At a regional scale, we found strong differences in burrow size and density. Burrow density affected burrow aggregation, which was utmost under mean densities. At both spatial scales, burrows were found at relatively clear (or low-covered) patches, as scrubs were lower and nearest vegetation was farther from burrows than randomly expected. Our results suggest habitat selection and effects of habitat quality on the life history of D. merlini. In spite of the recent expansion of the species distribution area, our data support the need for suitable habitat management programs. Information about ecological requirements is paramount to correctly assess spider conservation status. This topic has received little attention in spite of the diversity and the relevance of spider ecological roles.


1999 ◽  
Vol 77 (5) ◽  
pp. 776-783 ◽  
Author(s):  
Atle Mysterud ◽  
Per Kristian Larsen ◽  
Rolf Anker Ims ◽  
Eivind Østbye

Habitat ranking is often assumed to reflect food availability, but habitat selection may involve trade-offs, for example, between selecting for food or cover. We tested whether the habitat selection of 27 radio-collared European roe deer (Capreolus capreolus) and 10 free-ranging domestic sheep (Ovis aries) on a forest range in southern Norway reflected resource availability. We predicted that ruminants of different feeding types would use habitats according to the main forage class, but that antipredator behavior might remove the correlation between habitat selection and food availability, thus making temporal and spatial scaling crucial. As predicted, habitat selection by sheep was highly correlated with grass availability on both the home-range and study-area scales. The habitat ranking of roe deer habitat selection did not correlate with the availability of herbs on either scale, but rather was correlated with the availability of canopy cover. We found a clear effect of temporal scale on habitat selection by roe deer. During summer, roe deer used forest habitats with more forage to a greater extent when they were active than when they were inactive, and tended to use habitats with greater availability of herbs at night. We conclude that scale-dependent trade-offs in habitat selection may cause inconsistent habitat rankings when pooled across temporal and spatial scales.


Sign in / Sign up

Export Citation Format

Share Document