Satellite RNA takes flight

Author(s):  
Ursula Hofer
Keyword(s):  
Plant Disease ◽  
1998 ◽  
Vol 82 (4) ◽  
pp. 419-422 ◽  
Author(s):  
A. G. Gillaspie ◽  
M. R. Hajimorad ◽  
S. A. Ghabrial

A new seedborne strain of cucumber mosaic cucumovirus (CMV) that induces severe symptoms on many cowpea genotypes was detected in Georgia in 1994. This strain, designated CMV-Csb, is asymptomatic on tobacco, but it produces more severe cowpea stunt symptoms when present in combination with blackeye cowpea mosaic potyvirus than do the more prevalent CMV isolates. The new strain is seedborne in cowpea (1.5 to 37%), has no associated satellite RNA, and is classified as a member of subgroup I of CMV strains based on nucleic acid hybridization assays.


Virology ◽  
1987 ◽  
Vol 160 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Fernando Ponz ◽  
Adib Rowhani ◽  
S.M. Mircetich ◽  
George Bruening

Author(s):  
Barbara Wrzesińska ◽  
Agnieszka Zmienko ◽  
Lam Dai Vu ◽  
Ive De Smet ◽  
Aleksandra Obrępalska-Stęplowska

Abstract Key message PSV infection changed the abundance of host plant’s transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Abstract Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)–Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The ‘omic’ results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)–seq data were obtained to provide new insights into PSV-P–satRNA–plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.


2016 ◽  
Vol 7 ◽  
Author(s):  
Aleksandra Obrępalska-Stęplowska ◽  
Jenny Renaut ◽  
Sebastien Planchon ◽  
Arnika Przybylska ◽  
Przemysław Wieczorek ◽  
...  

2008 ◽  
Vol 82 (23) ◽  
pp. 11851-11858 ◽  
Author(s):  
Vitantonio Pantaleo ◽  
József Burgyán

ABSTRACT Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24°C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.


Author(s):  
B. D. Harrison

SynopsisSome of the most successful early applications of genetic engineering in crop improvement have been in the production of virus-resistant plants. This has been achieved not by the transfer of naturally occurring resistance genes from one plant species or variety to another but by transformation with novel resistance genes based on nucleotide sequences derived from the viruses themselves or from virus-associated nucleic acids. Transformation of plants with a DNA copy of the particle protein gene of viruses that have positive-sense single-stranded RNA genomes typically confers resistance to infection with the homologous and closely related viruses. Transformation with a gene that is transcribed to produce a benign viral satellite RNA can confer virus-specific tolerance of infection. In addition, recent work with viral poly-merase gene-related sequences offers much promise, and research is active on other strategies such as the use of virus-specific ribozymes.Already the field trialling of plants incorporating transgenic virus resistance has begun, with encouraging results, and effects on virus spread are being studied. Deployment strategies for the resistant plants must now be devised and the conjectural hazards of growing them assessed. Genetically engineered virus resistance promises to make a major contribution to the control of plant virus diseases by non-chemical methods.


Sign in / Sign up

Export Citation Format

Share Document