scholarly journals The Montreal Protocol protects the terrestrial carbon sink

Nature ◽  
2021 ◽  
Vol 596 (7872) ◽  
pp. 384-388
Author(s):  
Paul J. Young ◽  
Anna B. Harper ◽  
Chris Huntingford ◽  
Nigel D. Paul ◽  
Olaf Morgenstern ◽  
...  
BioScience ◽  
2007 ◽  
Vol 57 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Asmeret Asefaw Berhe ◽  
John Harte ◽  
Jennifer W. Harden ◽  
Margaret S. Torn

Author(s):  
Josep G. Canadell ◽  
Diane E. Pataki ◽  
Roger Gifford ◽  
Richard A. Houghton ◽  
Yiqi Luo ◽  
...  

2019 ◽  
Vol 12 (10) ◽  
pp. 809-814 ◽  
Author(s):  
Yongwen Liu ◽  
Shilong Piao ◽  
Thomas Gasser ◽  
Philippe Ciais ◽  
Hui Yang ◽  
...  

2000 ◽  
Vol 6 (7) ◽  
pp. 817-833 ◽  
Author(s):  
Andrew White ◽  
Melvin G. R. Cannell ◽  
Andrew D. Friend

2019 ◽  
Vol 116 (10) ◽  
pp. 4382-4387 ◽  
Author(s):  
Thomas A. M. Pugh ◽  
Mats Lindeskog ◽  
Benjamin Smith ◽  
Benjamin Poulter ◽  
Almut Arneth ◽  
...  

Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981–2010. For 2001–2010 we find a carbon sink of 0.85 (0.66–0.96) Pg year−1located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03–1.96) Pg year−1located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44–131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981–2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature.


2013 ◽  
Vol 10 (10) ◽  
pp. 16003-16041 ◽  
Author(s):  
J. R. Melton ◽  
V. K. Arora

Abstract. Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs) and use their vegetation attributes in calculations of the energy and water balance and to investigate the terrestrial carbon cycle. To accomplish these tasks, two approaches for PFT spatial representation are widely used: "composite" and "mosaic". The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2) coupled to the Canadian Land Surface Scheme (CLASS v 3.6). In the composite (single-tile) approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc.) that are common to all PFTs. In the mosaic (multi-tile) approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005) show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC) effects) differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively) and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same period. Inclusion of LUC causes the estimates of the terrestrial C sink to differ by 15.2 Pg C (16%) with values of 95.1 and 79.9 Pg C for the mosaic and composite approaches, respectively. Spatial differences in simulated vegetation and soil carbon and the manner in which terrestrial carbon balance evolves in response to LUC, in the two approaches, yields a substantially different estimate of the global land carbon sink. These results demonstrate that the spatial representation of vegetation has an important impact on the model response to changing climate, atmospheric CO2 concentrations, and land cover.


2005 ◽  
Vol 2 (5) ◽  
pp. 1283-1329 ◽  
Author(s):  
E.-D. Schulze

Abstract. This is a summary of the Vernadsky medal lecture given at the Nice EGU meeting in 2004. The lecture reviews the past (since the International Biological Program) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary, ecosystem, and biome productivity. Consideration is given to the interactions between biodiversity and biogeochemical processes.


Sign in / Sign up

Export Citation Format

Share Document