scholarly journals The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes

2020 ◽  
Vol 16 (9) ◽  
pp. 1013-1018 ◽  
Author(s):  
Asfandyar Sikandar ◽  
Laura Franz ◽  
Sebastian Adam ◽  
Javier Santos-Aberturas ◽  
Liliya Horbal ◽  
...  
Keyword(s):  
Author(s):  
Fabienne Morel ◽  
Christophe Gilbert ◽  
Christophe Geourjon ◽  
Jacques Frot-Coutaz ◽  
Raymond Portalier ◽  
...  

2018 ◽  
Vol 28 (2) ◽  
pp. 344-364 ◽  
Author(s):  
Polytimi S. Dimitriou ◽  
Alexander I. Denesyuk ◽  
Toru Nakayama ◽  
Mark S. Johnson ◽  
Konstantin Denessiouk

2020 ◽  
Vol 86 (12) ◽  
Author(s):  
Dongqing Xu ◽  
Yanyan Gao ◽  
Bo Sun ◽  
Tingting Ran ◽  
Liangping Zeng ◽  
...  

ABSTRACT Carboxylesterase PytH, isolated from the pyrethroid-degrading bacterium Sphingobium faniae JZ-2, could rapidly hydrolyze the ester bond of a wide range of pyrethroid pesticides, including permethrin, fenpropathrin, cypermethrin, fenvalerate, deltamethrin, cyhalothrin, and bifenthrin. To elucidate the catalytic mechanism of PytH, we report here the crystal structures of PytH with bifenthrin (BIF) and phenylmethylsulfonyl fluoride (PMSF) and two PytH mutants. Though PytH shares low sequence identity with reported α/β-hydrolase fold proteins, the typical triad catalytic center with Ser-His-Asp triad (Ser78, His230, and Asp202) is present and vital for the hydrolase activity. However, no contact was found between Ser78 and His230 in the structures we solved, which may be due to the fact that the PytH structures we determined are in their inactive or low-activity forms. The structure of PytH is composed of a core domain and a lid domain; some hydrophobic amino acid residues surrounding the substrate from both domains form a deeper and wider hydrophobic pocket than its homologous structures. This indicates that the larger hydrophobic pocket makes PytH fit for its larger substrate binding; both lid and core domains are involved in substrate binding, and the lid domain-induced core domain movement may make the active center correctly positioned with substrates. IMPORTANCE Pyrethroid pesticides are widely applied in agriculture and household; however, extensive use of these pesticides also causes serious environmental and health problems. The hydrolysis of pyrethroids by carboxylesterases is the major pathway of microbial degradation of pyrethroids, but the structure of carboxylesterases and its catalytic mechanism are still unknown. Carboxylesterase PytH from Sphingobium faniae JZ-2 could effectively hydrolyze a wide range of pyrethroid pesticides. The crystal structures of PytH are solved in this study. This showed that PytH belongs to the α/β-hydrolase fold proteins with typical catalytic Ser-His-Asp triad, though PytH has a low sequence identity (about 20%) with them. The special large hydrophobic binding pocket enabled PytH to bind bigger pyrethroid family substrates. Our structures shed light on the substrate selectivity and the future application of PytH and deepen our understanding of α/β-hydrolase members.


2010 ◽  
Vol 76 (15) ◽  
pp. 4933-4942 ◽  
Author(s):  
Gui-Ying Mei ◽  
Xiao-Xue Yan ◽  
Ali Turak ◽  
Zhao-Qing Luo ◽  
Li-Qun Zhang

ABSTRACT N-Acylhomoserine lactones (AHLs) are signaling molecules in many quorum-sensing (QS) systems that regulate interactions between various pathogenic bacteria and their hosts. Quorum quenching by the enzymatic inactivation of AHLs holds great promise in preventing and treating infections, and several such enzymes have been reported. In this study, we report the characterization of a novel AHL-degrading protein from the soil bacterium Ochrobactrum sp. strain T63. This protein, termed AidH, shares no similarity with any of the known AHL degradases but is highly homologous with a hydrolytic enzyme from Ochrobactrum anthropi ATCC 49188 that contains the alpha/beta-hydrolase fold. By liquid chromatography-mass spectrometry (MS) analysis, we demonstrate that AidH functions as an AHL-lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Mutational analyses indicate that the G-X-Nuc-X-G motif or the histidine residue conserved among alpha/beta-hydrolases is critical for the activity of AidH. Furthermore, the AHL-inactivating activity of AidH requires Mn2+ but not several other tested divalent cations. We also showed that AidH significantly reduces biofilm formation by Pseudomonas fluorescens 2P24 and the pathogenicity of Pectobacterium carotovorum, indicating that this enzyme is able to effectively quench QS-dependent functions in these bacteria by degrading AHLs.


Structure ◽  
2004 ◽  
Vol 12 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Yves Bourne ◽  
Alinda A Hasper ◽  
Henri Chahinian ◽  
Marianick Juin ◽  
Leo H de Graaff ◽  
...  

1996 ◽  
Vol 319 (2) ◽  
pp. 411-420 ◽  
Author(s):  
Torben ØSTERLUND ◽  
Birgitta DANIELSSON ◽  
Eva DEGERMAN ◽  
Juan Antonio CONTRERAS ◽  
Gudrun EDGREN ◽  
...  

Hormone-sensitive lipase (HSL) plays a key role in lipid metabolism and overall energy homoeostasis, by controlling the release of fatty acids from stored triglycerides in adipose tissue. Lipases and esterases form a protein superfamily with a common structural fold, called the α/β-hydrolase fold, and a catalytic triad of serine, aspartic or glutamic acid and histidine. Previous alignments between HSL and lipase 2 of Moraxella TA144 have been extended to cover a much larger part of the HSL sequence. From these extended alignments, possible sites for the catalytic triad and α/β-hydrolase fold are suggested. Furthermore, it is proposed that HSL contains a structural domain with catalytic capacity and a regulatory module attached, as well as a structural N-terminal domain unique to this enzyme. In order to test the proposed domain structure, rat HSL was overexpressed and purified to homogeneity using a baculovirus/insect-cell expression system. The purification, resulting in > 99% purity, involved detergent solubilization followed by anion-exchange chromatography and hydrophobic-interaction chromatography. The purified recombinant enzyme was identical to rat adipose-tissue HSL with regard to specific activity, substrate specificity and ability to serve as a substrate for cAMP-dependent protein kinase. The recombinant HSL was subjected to denaturation by guanidine hydrochloride and limited proteolysis. These treatments resulted in more extensive loss of activity against phospholipid-stabilized lipid substrates than against water-soluble substrates, suggesting that the hydrolytic activity can be separated from recognition of lipid substrates. These data support the concept that HSL has at least two major domains.


Sign in / Sign up

Export Citation Format

Share Document