scholarly journals A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Kai Jin ◽  
Fei Wang ◽  
Deliang Chen ◽  
Huanhuan Liu ◽  
Wenbin Ding ◽  
...  
2012 ◽  
Vol 12 (12) ◽  
pp. 31767-31828 ◽  
Author(s):  
A. Hilboll ◽  
A. Richter ◽  
J. P. Burrows

Abstract. Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term data set of tropospheric pollution. However, the measurements differ in spatial resolution, local time of measurement, and measurement geometry. All these factors can severely impact the retrieved NO2 columns, which is why they need to be taken into account when analysing time series spanning more than one instrument. In this study, we present several ways to explicitly account for the instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving their high spatial resolution. Both a physical method, based on spatial averaging of the measured earthshine spectra and extraction of a resolution pattern, and statistical methods, including instrument-dependent offsets in the fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series and to an extended data set comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution and significantly reducing the uncertainties of the retrieved trend estimates compared to previous studies. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over East Central China triplicating from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27 ± 3.7% yr−1 and +20 ± 1.9% yr−1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease of −6.0 ± 0.37% yr−1. Most megacities in China, India, and the Middle East show increasing NO2 columns of +5–10% yr−1, leading to a doubling to triplication within the observed period. While linear trends derived with the different methods are consistent, comparison of the GOME and SCIAMACHY time series as well as inspection of time series over individual areas shows clear indication of non-linear changes in NO2 columns in response to rapid changes in technology used and the economical situation.


2019 ◽  
Vol 11 (9) ◽  
pp. 1132 ◽  
Author(s):  
Shasha Wang ◽  
Deyong Hu ◽  
Shanshan Chen ◽  
Chen Yu

Anthropogenic heat (AH) generated by human activities has a major impact on urban and regional climate. Accurately estimating anthropogenic heat is of great significance for studies on urban thermal environment and climate change. In this study, a gridded anthropogenic heat flux (AHF) estimation scheme was constructed based on socio-economic data, energy-consumption data, and multi-source remote sensing data using a partition modeling method, which takes into account the regional characteristics of AH emission caused by the differences in regional development levels. The refined AHF mapping in China was realized with a high resolution of 500 m. The results show that the spatial distribution of AHF has obvious regional characteristics in China. Compared with the AHF in provinces, the AHF in Shanghai is the highest which reaches 12.56 W·m−2, followed by Tianjin, Beijing, and Jiangsu. The AHF values are 5.92 W·m−2, 3.35 W·m−2, and 3.10 W·m−2, respectively. As can be seen from the mapping results of refined AHF, the high-value AHF aggregation areas are mainly distributed in north China, east China, and south China. The high-value AHF in urban areas is concentrated in 50–200 W·m−2, and maximum AHF in Shenzhen urban center reaches 267 W·m−2. Further, compared with other high resolution AHF products, it can be found that the AHF results in this study have higher spatial heterogeneity, which can better characterize the emission characteristics of AHF in the region. The spatial pattern of the AHF estimation results correspond to the distribution of building density, population, and industry zone. The high-value AHF areas are mainly distributed in airports, railway stations, industry areas, and commercial centers. It can thus be seen that the AHF estimation models constructed by the partition modeling method can well realize the estimation of large-scale AHF and the results can effectively express the detailed spatial distribution of AHF in local areas. These results can provide technical ideas and data support for studies on surface energy balance and urban climate change.


Author(s):  
Nektarios Chrysoulakis ◽  
Mattia Marconcini ◽  
Jean-Philippe Gastellu-Etchegorry ◽  
C.S.B Grimmong ◽  
Christian Feigenwinter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document