scholarly journals Bark and wood tissues of American elm exhibit distinct responses to Dutch elm disease

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. M. Sherif ◽  
L. A. Erland ◽  
M. R. Shukla ◽  
P. K Saxena
Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


2007 ◽  
Vol 26 (7) ◽  
pp. 977-987 ◽  
Author(s):  
Andrew E. Newhouse ◽  
Franziska Schrodt ◽  
Haiying Liang ◽  
Charles A. Maynard ◽  
William A. Powell

1978 ◽  
Vol 56 (20) ◽  
pp. 2550-2566 ◽  
Author(s):  
G. B. Ouellette

Plugging of certain vessels may occur in elm shortly after inoculation with the Dutch elm disease pathogen, Ceratocystis ulmi (Buism.) C. Moreau. Plugging components include fibrillar material of varying density and fungal cells traceable mostly to inoculated spores. Some material is similar to fungal cell contents, and indications of extrusion of the latter through ruptured or unruptured walls were obtained. Other material is also attributable to disintegrating fungal walls. Radioautographs obtained from samples treated with [6-3H]thymidine indicate significant labeling of fungal cell contents and of similar material, free.Similar fibrillar material, some labeled, is present within pit membranes, in adjacent parenchyma cell walls, and in periplasmic areas associated with retraction of the plasmalemma and with other cytoplasmic disturbances. Host vessel walls are also altered in the presence of some fibrillar material but apparently release only limited amounts of disintegration products into vessels.The possible implications of these observations are discussed in relation to current hypotheses on wilt diseases.


2005 ◽  
Vol 23 (1) ◽  
pp. 21-24 ◽  
Author(s):  
A. M. Townsend ◽  
S. E. Bentz ◽  
L. W. Douglass

Abstract Rooted stem cuttings of 19 American elm (Ulmus americana L.) cultivars and selections, and rooted cuttings of two non-American elm selections, U. carpinifolia Gleditsch 51 and 970 (U. glabra Huds. x (U. wallichiana Planch. x U. carpinifolia)), along with a group of American elm seedlings, were planted in a randomized block design. When the trees were nine years old, they were inoculated with a mixed spore suspension of Ophiostoma ulmi (Buisman) C. Nannf. and Ophiostoma novo-ulmi Brasier, the causal fungi for Dutch elm disease (DED). Analyses of variance showed highly significant variation among clones in foliar symptoms 4 weeks after inoculation and in crown dieback one and two years after inoculation. After two years, 13 of the American clones showed significantly less dieback than the American elm seedlings, and 18 American clones showed significantly less injury than a randomly chosen, unselected American elm clone, 57845. The American clones with the most DED-tolerance were cultivars ‘Valley Forge,’ ‘Princeton,’ ‘Delaware,’ and ‘New Harmony,’ and selections N3487, R18-2, 290, 190, and GDH. The non-American selections 51 and 970 also exhibited high levels of disease tolerance. Most susceptible were American clones 57845, ‘Augustine,’ Crandall, W590, and the American elm seedlings. The most disease-tolerant American elm selections identified in this study are being evaluated further for possible naming and release to the nursery industry.


Author(s):  
Paul Schaberg ◽  
Paula Murakami ◽  
Christopher F. Hansen ◽  
Gary J. Hawley ◽  
Christian O. Marks ◽  
...  

Although Dutch elm disease (DED) is the primary threat to American elm (Ulmus americana L.), we hypothesized that shoot freezing injury may also limit tree productivity and survival in the north. We assessed shoot cold tolerance and field winter injury of American elm bred for DED tolerance planted in Lemington, VT. We tested for differences in cold tolerance associated with date, maternal DED tolerance source, paternal sources from plant hardiness zones 5a, 6a and 6b (determined using data from 1996-2005), and the interactions of these. Cold tolerance was greatest in the winter, followed by fall and then spring. For all dates, cold tolerance never differed between maternal DED tolerance sources. However, in mid-winter, paternal sources from zone 5a (coldest zone) were significantly more cold tolerant than sources from zone 6b (warmest zone), and sources from zone 6a were intermediate. Field freezing injury confirmed that shoots were only marginally cold tolerant relative to ambient temperature lows.


1992 ◽  
Vol 10 (1) ◽  
pp. 59-62
Author(s):  
Subhash C. Domir ◽  
Lawrence R. Schreiber ◽  
Jann M. Ichida ◽  
Steven M. Eshita

Abstract We examined the effects of elm selection, explant source and media composition on growth of the Dutch elm disease (DED) fungus Ophiostoma ulmi on callus cultures. Calluses were generated from leaf and stem tissue of an American elm (Ulmus Americana L.) seedling (A), susceptible to the disease; an American elm selection 8630, resistant to the disease; and a Siberian elm (U. pumila L.) seedling, also resistant to DED. Calluses were generated on modified Murashige-Skoog (MMS) medium, either with (MMSC) or without coconut milk. Explant source did not affect the fungal growth rate on the callus. Rate of O. ulmi growth on American elm A callus was similar on both media; on Siberian and 8630, fungal growth rate was more rapid on callus cultured on MMS than on MMSC. However, in the absence of callus tissue, O. ulmi growth on MMSC medium was more than five times as rapid as it was on MMS. We observed significant interactions between explant source and selection, and between medium and selection. Fungal growth was always more rapid on American A, and American 8630 then on Siberian. Scanning electron microscopy revealed heavy fungal sporulation on American A, slight on Siberian and none on American 8630. High performance liquid chromatography analysis showed that the secondary metabolic profiles were distinguishable for callus tissue versus explant tissue, but were similar for calli generated from different explant sources.


1995 ◽  
Vol 13 (3) ◽  
pp. 126-128 ◽  
Author(s):  
A.M. Townsend ◽  
S.E. Bentz ◽  
G.R. Johnson

Abstract Ramets of nine American elm (Ulmus americana L.) clones or cultivars were planted with ramets of Ulmus ‘Frontier’, Ulmus ‘Prospector’, and American elm seedlings in a randomized block, split-plot design. When they were three years old, the trees were inoculated in the main trunk on either one of two selected dates in May with a spore suspension of Ophiostoma ulmi, the causal fungus for Dutch elm disease (DED). Analyses of variance showed significant variation among clones and between inoculation dates in disease symptoms four weeks and one year after inoculation. Inoculations made on May 18 generally created significantly more symptoms than inoculations made only nine days later. Four-week symptom expression was influenced also by a significant interaction between clonal or seedling group and inoculation date. When data from both inoculation dates were combined, six American elm clones (‘American Liberty’, ‘Princeton’, 680, R18–2, 180, and 3) showed significantly fewer foliar symptoms after four weeks than the American elm seedlings and three other American elm clones. Five of these same six more tolerant American clones averaged significantly less crown dieback after one year than the other American clones or seedlings tested. One of the American elm clones (clone 3) showed a level of disease tolerance equal statistically to ‘Frontier’ and ‘Prospector’, two cultivars which have shown a high degree of tolerance to DED in other studies.


Sign in / Sign up

Export Citation Format

Share Document