scholarly journals Evaluation of therapeutic potential of the silver/silver chloride nanoparticles synthesized with the aqueous leaf extract of Rumex acetosa

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sobha Kota ◽  
Pradeep Dumpala ◽  
Ratna Kumari Anantha ◽  
Mahendra Kumar Verma ◽  
Surendranath Kandepu
Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4382 ◽  
Author(s):  
Kunle Okaiyeto ◽  
Mike O. Ojemaye ◽  
Heinrich Hoppe ◽  
Leonard V. Mabinya ◽  
Anthony I. Okoh

In this present study, silver nanoparticles (Ag/AgCl NPs) were synthesized using an aqueous leaf extract of Oedera genistifolia as a reducing agent. The biosynthesized Ag/AgCl NPs was characterized by UV-visible spectrophotometry, transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, sequel to antibacterial assay, the cytotoxic effect of the phytofabricated Ag/AgCl NPs was assessed against the HeLa cell line (human cervix adenocarcinoma). The results of the characterization of the synthesized Ag/AgCl NPs indicate the successful synthesis using plant extract as a reducing agent, with UV-Vis spectra between 290–360 nm. TEM results showed that Ag/AgCl NPs was spherical in shape with an average size of 34.2 nm. EDX analysis revealed that the particles were predominantly composed of carbon, oxygen, chlorine, and silver, while FTIR identified major phytochemical compounds, which could be responsible for bio-reducing and capping potential. XRD analysis showed the crystallinity of Ag/AgCl NPs, with a face-centred cubic structure. The studied Ag/AgCl NPs had no cytotoxic effect on HeLa cells and exhibited antibacterial activity (minimum inhibitory concentration (MIC) 0.25–1 mg/mL; minimum bactericidal concentration (MBC) 2–16 mg/mL) against both the Gram-negative and Gram-positive bacteria investigated. Findings from this study suggest that this plant as a good candidate for producing new antibacterial drugs.


2017 ◽  
Vol 41 (3) ◽  
pp. 1363-1371 ◽  
Author(s):  
Maheshkumar Prakash Patil ◽  
Jaymee Palma ◽  
Natasha Chantal Simeon ◽  
Xing Jin ◽  
Xiaolin Liu ◽  
...  

Ecofriendly procedure for silver–silver chloride nanoparticle synthesis with different reaction parameters tested.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1962
Author(s):  
Lingjun Li ◽  
Guangli Li ◽  
Yuliang Cao ◽  
Yvonne Yanwen Duan

High-definition transcranial direct current stimulation (HD-tDCS) is a promising non-invasive neuromodulation technique, which has been widely used in the clinical intervention and treatment of neurological or psychiatric disorders. Sintered Ag/AgCl electrode has become a preferred candidate for HD-tDCS, but its service life is very short, especially for long-term anodal stimulation. To address this issue, a novel highly durable conductive carbon/silver/silver chloride composite (C/Ag/AgCl) electrode was fabricated by a facile cold rolling method. The important parameters were systematically optimized, including the conductive enhancer, the particle size of Ag powder, the C:Ag:PTFE ratio, the saline concentration, and the active substance loading. The CNT/Ag/AgCl-721 electrode demonstrated excellent specific capacity and cycling performance. Both constant current anodal polarization and simulated tDCS measurement demonstrated that the service life of the CNT/Ag/AgCl-721 electrodes was 15-16 times of that of sintered Ag/AgCl electrodes. The much longer service life can be attributed to the formation of the three-dimensional interpenetrating conductive network with CNT doping, which can maintain a good conductivity and cycling performance even if excessive non-conductive AgCl is accumulated on the surface during long-term anodal stimulation. Considering their low cost, long service life, and good skin tolerance, the proposed CNT/Ag/AgCl electrodes have shown promising application prospects in HD-tDCS, especially for daily life scenarios.


Sign in / Sign up

Export Citation Format

Share Document