scholarly journals Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of Oedera genistifolia: Characterization and Antibacterial Potential

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4382 ◽  
Author(s):  
Kunle Okaiyeto ◽  
Mike O. Ojemaye ◽  
Heinrich Hoppe ◽  
Leonard V. Mabinya ◽  
Anthony I. Okoh

In this present study, silver nanoparticles (Ag/AgCl NPs) were synthesized using an aqueous leaf extract of Oedera genistifolia as a reducing agent. The biosynthesized Ag/AgCl NPs was characterized by UV-visible spectrophotometry, transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, sequel to antibacterial assay, the cytotoxic effect of the phytofabricated Ag/AgCl NPs was assessed against the HeLa cell line (human cervix adenocarcinoma). The results of the characterization of the synthesized Ag/AgCl NPs indicate the successful synthesis using plant extract as a reducing agent, with UV-Vis spectra between 290–360 nm. TEM results showed that Ag/AgCl NPs was spherical in shape with an average size of 34.2 nm. EDX analysis revealed that the particles were predominantly composed of carbon, oxygen, chlorine, and silver, while FTIR identified major phytochemical compounds, which could be responsible for bio-reducing and capping potential. XRD analysis showed the crystallinity of Ag/AgCl NPs, with a face-centred cubic structure. The studied Ag/AgCl NPs had no cytotoxic effect on HeLa cells and exhibited antibacterial activity (minimum inhibitory concentration (MIC) 0.25–1 mg/mL; minimum bactericidal concentration (MBC) 2–16 mg/mL) against both the Gram-negative and Gram-positive bacteria investigated. Findings from this study suggest that this plant as a good candidate for producing new antibacterial drugs.

2014 ◽  
Vol 1704 ◽  
Author(s):  
Sathiraju Annapurna ◽  
Yathapu Suresh ◽  
Bojja Sreedhar ◽  
Ganghishetti Bhikshamaiah ◽  
A.K. Singh

ABSTRACTCopper nanoparticles are synthesized successfully through chemical reduction of different copper salts stabilized by Ocimum Sanctum Leaf extract, a natural biopolymer. The resulting copper nanoparticles are characterized by using UV Visible Absorption Spectrometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Small Angle X-ray Scattering (SAXS) and Fourier Transform Infrared Spectroscopy (FTIR) experiments. Copper nanoparticles prepared display an absorption peak at around 558 nm. X-ray diffraction analysis shows that the particles are FCC crystalline. SEM and TEM display the formation of copper nanoparticles with an average size of 10 nm. The SAXS studies demonstrate the formation of spherical nanoparticles with bimodal size distribution. The FTIR spectrum analysis has confirmed the presence of functional groups of stabilizer Ocimum Sanctum leaf extract in capping the copper nanoparticles.


2016 ◽  
Vol 8 (1) ◽  
pp. 1523-1532 ◽  
Author(s):  
Sujata D Wangkheirakpam ◽  
Wangkheirakpam Radhapiyari Devi ◽  
Chingakham Brajakishore Singh ◽  
Warjeet S Laitonjam

The leaf extract of Strobilanthes flaccidifolius Nees. was used for the synthesis of silver nanoparticles through a green technique of synthesis. The nanoparticles was characterized by UV-VIS spectroscopy which proves the formation silver nanoparticles. FTIR (Fourier Transmission infra red spectroscopy) study was carried out to assess the biomolecule as indigo precursors, Energy dispersion X-ray analysis(EDX) data further proves it. EPR (Electron paramagnetic resonance technique) shows the free radical in silver neutral state and XRD(X-ray diffraction technique) also repots silver neutral formation.The morphology and the shape of the silver nanoparticles were determined by Scanning electron microscopy(SEM) and Tunneling electron microscopy (TEM).The nanoparticles adopted spherical morphology and the size ranging from 6nm to 54.11nm and average size was determined as 12.15± 5.3nm.The nanoparticles had antimicrobial activity


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3803 ◽  
Author(s):  
Nur Diyana Syazwani Zambri ◽  
Nurul Izza Taib ◽  
Famiza Abdul Latif ◽  
Zakiah Mohamed

The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400–600 cm−1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9–12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.


Author(s):  
Rajesh Dodiya ◽  
Mrunal K Shirsat ◽  
Jitendra K Patel

Aims: In this study, the phytochemical analysis of Eucalyptus globulus leaf was analyzed and  used in synthesis of silver nanoparticles. The silver nanoparticle incorporated antimicrobial cosmeceutical cream was developed and characterized for physicochemical parameters, antimicrobial properties, and biocompatibility was evaluated. Methodology: E. globulus aqueous leaf extract was preliminary analyzed for the presence of phytochemical and confirmed using thin layer chromatography techniques. Further, a green synthesis of silver nanoparticle was accomplished using aqueous leaf extract of E. globulus. The formation of nanoparticles was confirmed and characterized by UV-vis spectrophotometer, transmission electron microscopy, dynamic light scattering, zeta potential, X-ray diffractometer, field emission scanning electron microscopy, and fourier transform infrared spectroscopy. The nanoparticles were incorporated in cream and the antimicrobial property was evaluated using agar well diffusion method. Results: The phyto-chemical evaluation of E. globulus aqueous leaf extract showed the presence of phenolic, tannins, saponnins, carbohydrate, and glycoside. Moreover, Eucalyptus globulus aqueous leaf extract exhibited antioxidant activity in a dose dependent manner. The surface plasmon resonance peak was 424 nm and functional group such as hydroxyl, carboxyl, alkyl halides, amines, carbonyl, amide groups, and phenolic compounds were present which was important for the bio-reduction, stabilization, and capping of the silver nitrate into nanoparticles. Energy dispersive x-ray (EDX) analysis showed silver as the main element present and the nanoparticles were oval in shape and 19-60 nm in size with effective diameter of 90 nm. The test cream exhibited surface roughness of ≈ 30 nm, contact angle of ≈ 100, and surface energy of ≈88 mN/m. The formulated creams were consistent, with satisfactory pH, viscosity and spreadability. Conclusion: The results demonstrated an eco-friendly and cost-effective approach to synthesis biogenic silver nanoparticles using aqueous extract of E. globulus. Eucalyptus globulus aqueous leaf extract stabilized and capped silver nanoparticles incorporated topical cream exhibited potent antimicrobial efficacy against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098533
Author(s):  
Jing-Yuan Peng ◽  
Michael George Botelho ◽  
Jukka Pekka Matinlinna ◽  
Hao-Bo Pan ◽  
Edwin Kukk ◽  
...  

Objective The effects of saliva on demineralized dentin and silver diamine fluoride (SDF) were investigated in vitro. Methods Dentin samples stored in deionized water (DIW), buffer solution (BS), basal medium mucin (BMM), and unstimulated whole saliva (UWS) were demineralized for 3 days and immersed in the same storage media. SDF as a 38 mass% solution was applied to the dentin samples for 3 minutes after they had been replaced in their respective medium. Surfaces were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Results Scanning electron microscopy showed various surface deposits and coatings, including occlusion of dentinal tubules. DIW resulted in the thinnest coating, whereas BMM resulted in the thickest. EDX and XPS showed the formation of metallic silver and silver compounds in all four media, with the greatest formation in BS. XRD indicated that the main product was silver chloride except in DIW. Sulphur was found in BMM and UWS. EDX and XPS detected fluoride and XRD detected calcium fluoride and fluorohydroxyapatite in BS, BMM, and UWS. Conclusion The interaction between SDF and demineralized dentin was dependent upon the storage medium. BMM provided an outcome most similar to human saliva.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
M. Kooti ◽  
A. Naghdi Sedeh

A new and simple method was applied for the synthesis of ZnO nanoparticles with an average size of 20 nm. In this microwave-assisted combustion method, glycine as a fuel and zinc nitrate as precursor were used. The final product was obtained very fast with high yield and purity. The synthesized nanoscale ZnO was characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FT-IR). The size and morphology of the ZnO nanoparticles have been determined by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. This is a simple and fast method for the preparation of ZnO nanoparticles with no need for expensive materials or complicated treatments.


Author(s):  
MONIKA GUPTA

Objective: This research work develops an approach to synthesize silver nanoparticles (AgNPs) by reduction of leaf extract of Catharanthus roseus plant. This study produces synthesized nanoparticles that have process-controlled attributes which make their antibiotic action highly efficient. These attributes include smaller size, proper morphology, uniform dispersion, metal ion content, and formation of functional groups. By optimizing the reduction process parameters, AgNPs gain the desired properties.  Methods: The biosynthesis of AgNPs process was performed using reaction of 10% (w/v) C. roseus leaf extract with AgNO3. The optimum conditions and concentration used for synthesis of nanoparticles were: 1 mM AgNO3, pH 5, and temperature 80°C with an incubation time of 72 h. All the above parameters were analyzed by ultraviolet-visible spectrophotometer with the surface plasmon resonance peak obtained at 440 nm. Results: Various characterization techniques were performed, namely, scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, photoluminescence study, X-ray diffraction spectroscopy, Fourier transform infrared, dynamic light scattering, and atomic force microscopy. The results obtained from characterization confirmed the spherical morphology of the nanoparticles with size between 50 and 87 nm. In the current investigation, the antimicrobial activity of biosynthesized AgNPs was also determined using minimum inhibitory concentration and zone of inhibition methods against six different bacteria at different doses of AgNPs (100, 150, and 200 μg/ml) alone and also in combination with antibiotic-streptomycin. Conclusion: The results revealed that high concentration of AgNPs inhibits the bacterial growth. Furthermore, AgNPs revealed much stronger antibacterial action in synergy with streptomycin against antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document