scholarly journals Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hisayuki Komaki ◽  
Kenta Sakurai ◽  
Akira Hosoyama ◽  
Akane Kimura ◽  
Yasuhiro Igarashi ◽  
...  
2016 ◽  
Vol 69 (9) ◽  
pp. 712-718 ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Tomohiko Tamura ◽  
Akio Oguchi ◽  
Moriyuki Hamada ◽  
...  

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 257
Author(s):  
Hisayuki Komaki ◽  
Tomohiko Tamura

(1) Background: Phytohabitans is a recently established genus belonging to rare actinomycetes. It has been unclear if its members have the capacity to synthesize diverse secondary metabolites. Polyketide and nonribosomal peptide compounds are major secondary metabolites in actinomycetes and expected as a potential source for novel pharmaceuticals. (2) Methods: Whole genomes of Phytohabitans flavus NBRC 107702T, Phytohabitans rumicis NBRC 108638T, Phytohabitans houttuyneae NBRC 108639T, and Phytohabitans suffuscus NBRC 105367T were sequenced by PacBio. Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters were bioinformatically analyzed in the genome sequences. (3) Results: These four strains harbored 10, 14, 18 and 14 PKS and NRPS gene clusters, respectively. Most of the gene clusters were annotated to synthesis unknown chemistries. (4) Conclusions: Members of the genus Phytohabitans are a possible source for novel and diverse polyketides and nonribosomal peptides.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 323 ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Azusa Takahashi-Nakaguchi ◽  
Tetsuhiro Matsuzawa ◽  
...  

2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Scarlett Alonso-Carmona ◽  
Blanca Vera-Gargallo ◽  
Rafael R. de la Haba ◽  
Antonio Ventosa ◽  
Horacio Sandoval-Trujillo ◽  
...  

ABSTRACT The draft genome sequence of Saccharomonospora sp. strain LRS4.154, a moderately halophilic actinobacterium, has been determined. The genome has 4,860,108 bp, a G+C content of 71.0%, and 4,525 open reading frames (ORFs). The clusters of PKS and NRPS genes, responsible for the biosynthesis of a large number of biomolecules, were identified in the genome.


2017 ◽  
Vol 139 (4) ◽  
pp. 1404-1407 ◽  
Author(s):  
Xavier Vila-Farres ◽  
John Chu ◽  
Daigo Inoyama ◽  
Melinda A. Ternei ◽  
Christophe Lemetre ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 328 ◽  
Author(s):  
Mohammad Sayari ◽  
Magriet A. van der Nest ◽  
Emma T. Steenkamp ◽  
Nicole C. Soal ◽  
P. Markus Wilken ◽  
...  

In filamentous fungi, genes in secondary metabolite biosynthetic pathways are generally clustered. In the case of those pathways involved in nonribosomal peptide production, a nonribosomal peptide synthetase (NRPS) gene is commonly found as a main element of the cluster. Large multifunctional enzymes are encoded by members of this gene family that produce a broad spectrum of bioactive compounds. In this research, we applied genome-based identification of nonribosomal peptide biosynthetic gene clusters in the family Ceratocystidaceae. For this purpose, we used the whole genome sequences of species from the genera Ceratocystis, Davidsoniella, Thielaviopsis, Endoconidiophora, Bretziella, Huntiella, and Ambrosiella. To identify and characterize the clusters, different bioinformatics and phylogenetic approaches, as well as PCR-based methods were used. In all genomes studied, two highly conserved NRPS genes (one monomodular and one multimodular) were identified and their potential products were predicted to be siderophores. Expression analysis of two Huntiella species (H. moniliformis and H. omanensis) confirmed the accuracy of the annotations and proved that the genes in both clusters are expressed. Furthermore, a phylogenetic analysis showed that both NRPS genes of the Ceratocystidaceae formed distinct and well supported clades in their respective phylograms, where they grouped with other known NRPSs involved in siderophore production. Overall, these findings improve our understanding of the diversity and evolution of NRPS biosynthetic pathways in the family Ceratocystidaceae.


Sign in / Sign up

Export Citation Format

Share Document