scholarly journals Iodine k-edge dual energy imaging reveals the influence of particle size distribution on solute transport in drying porous media

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Salomé M. S. Shokri-Kuehni ◽  
Mina Bergstad ◽  
Muhammad Sahimi ◽  
Colin Webb ◽  
Nima Shokri
Water SA ◽  
2018 ◽  
Vol 44 (3 July) ◽  
Author(s):  
Samaneh Amanabadi ◽  
Mohammad Hossien Mohammadi ◽  
Mohammad Hassan Masihabadi ◽  
Mehran Vazirinia

Detailed information derived from a soil moisture characteristics curve (SMC) helps in water flow and solute transport management. Hence, prediction of the SMC from soil particle size distribution (PSD), which is easy to measure, would be convenient. In this study, we combine an integrated robust PSD-based model and a Van Genuchten SMC model to predict a continuous form of SMC using sand, silt and clay percentages for 50 soils selected from the UNSODA database. We compare the performance of the proposed approach with some previous prediction models. The results indicated that the SMC can be predicted and modelled properly by using sand, silt, clay and bulk density data. The model’s bias was attributed to the high fine particle and organic carbon (OC) content. We concluded that independence of the proposed method from the database and any empirical coefficients make predictions more reliable and applicable for large-scale water and solute transport management.


2021 ◽  
Author(s):  
Javad Bezaatpour ◽  
Esmaeil Fatehifar ◽  
Ali Rasoulzadeh

Abstract Knowledge of porous media structure is an essential part of the hydrodynamic investigation of fluid flow in porous media. To study soil behavior (as a granular porous media) and water and contaminant movement in the vadose zone, appropriate estimation of soil water retention curve (SWRC) and soil hydraulic conductivity curve (SHCC) has a pivotal role and is one of the most challenging topics for researchers and engineers in soil and water science. The SWCR can be approximated using an accurate particle size distribution (PSD) function. In this study by applying random close packing (RCP) method as an encouraging method for predicting and studying particle configuration, an optimal particle size distribution is developed for coarse-grained soils (0.025 mm < PSD < 3.35mm). The mentioned RCP is generated using heuristic algorithm with merging applicable equations of soil science. For porous media modeling, MATLAB software is used and the predicted results by the optimal model for the parameters of porosity, pressure drop, and saturated hydraulic conductivity are compared with laboratory measurements. Experimental design is conducted by MINITAB and predicted coarse-grained soils structure by the model is compared with 4 sifted soils. The results of the sensitivity analysis showed that the porosity obtained from the model is strongly sensitive to the resolution factor and should be chosen with a sufficiently large amount (higher than 250). Results showed good consistency (up to 95%) between predicted porosity and only 10% difference in pressure drop and permeability with observed measurements.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1448
Author(s):  
Joseph Y. Fu ◽  
Xiang’an Yue ◽  
Bo Zhang

In petroleum, geological and environmental science, flow through porous media is conventionally studied complementarily with numerical modeling/simulation and experimental corefloods. Despite advances in numerical modeling/simulation, experimental corefloods with actual samples are still desired for higher-specificity testing or more complex mechanistic studies. In these applications, the lack of advances in physical modeling is very apparent with the available options mostly unchanged for decades (e.g., sandpacks of unconsolidated packing materials, industry-accepted substitutes with fixed/mismatching petrophysical properties such as Berea sandstone). Renewable synthetic porous media with adjustable parameters are the most promising but have not advanced adequately. To address this, a methodology of advanced physical modeling of the fundamental parameters of dominant mineralogy, particle size distribution, packing, and cementation of a target natural porous media is introduced. Based upon the tight physical modeling of these four fundamental parameters, the other derived parameters of interests including wettability, porosity, pore throat size distribution, permeability, and capillary pressure can be concurrently modeled very close as well by further fine-tuning one of the fundamental parameters while holding the rest constant. Through this process, concurrent multi-parametric physical modeling of the primary petrophysical parameters including particle size distribution, wettability, porosity, pore throat size distribution, permeability, capillary pressure behavior in a target sandstone becomes possible.


2020 ◽  
Author(s):  
Nima Shokri ◽  
Salomé M.S. Shokri-Kuehni ◽  
Mohammad Javad Shojaei

&lt;p&gt;Saline water evaporation from a single meniscus plays an important role in determining the general dynamics of evaporation from porous media filled with saline water, which is relevant to several processes such as soil salinization, land-atmosphere interaction and soil moisture-precipitation interactions. Fundamental understanding of the mechanisms controlling solute transport and deposition in single capillary tubes is a necessary step to describe saline water evaporation and solute precipitation in complex porous media (Norouzi Rad et al., 2013; Shokri-Kuehni et al., 2017a; Shokri-Kuehni et al., 2017b). Within this context, we utilized dual energy imaging using synchrotron X-ray micro-tomography (Shokri-Kuehni et al., 2018) to investigate solute transport and deposition during evaporation from single capillary tubes of square and circular cross sections with lateral dimension of 1 mm and 3 mm (two sizes per cross section which resulted in four capillary tubes in total). The capillary tubes were filled with CaI2 solution of 5% concentration (by weight) and were placed under similar evaporative conditions. All boundaries were closed except top which was exposed to air for evaporation. The drying capillary tubes were scanned approximately once every hour for nearly 20 hrs. The recorded images enabled us to quantify solute concentration with a high spatial and temporal resolution throughout the capillary tubes with different sizes and cross sections and delineate the key transport mechanisms controlling solute transport and preferential deposition during evaporation. Our findings clearly show the contribution and impact of corner flow observed in square capillary tubes on the spatio-temporal distribution of solute, the evaporative mass losses and the velocity of the receding meniscus. The obtained results extend the fundamental understanding required for describing the transport mechanisms controlling saline water evaporation from porous media.&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Norouzi Rad, M., N. Shokri, M. Sahimi (2013), Phys. Rev. E, 88, 032404.&lt;/p&gt;&lt;p&gt;Shokri-Kuehni, S.M.S., T. Vetter, C. Webb, N. Shokri (2017a), Geophys. Res. Lett., 44, 5504&amp;#8211;5510.&lt;/p&gt;&lt;p&gt;Shokri-Kuehni, S.M.S., M. Norouzirad, C. Webb, N. Shokri (2017b), Adv. Water Resour., 105, 154-161.&lt;/p&gt;&lt;p&gt;Shokri-Kuehni, S.M.S., M. Bergstad, M. Sahimi, C. Webb, N. Shokri (2018b), Sci. Rep., 10, 10731, London: Nature Publishing Group.&lt;/p&gt;


2019 ◽  
Vol 574 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongxia Li ◽  
Junwei Wan ◽  
Hongbin Zhan ◽  
Xi Cheng ◽  
Wei Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document