Permeability of Porous Media as a Function of Porosity and Particle Size Distribution

1980 ◽  
Vol 23 (3) ◽  
pp. 0742-0745 ◽  
Author(s):  
Ramesh Pall ◽  
N. N. Moshenin
2021 ◽  
Author(s):  
Javad Bezaatpour ◽  
Esmaeil Fatehifar ◽  
Ali Rasoulzadeh

Abstract Knowledge of porous media structure is an essential part of the hydrodynamic investigation of fluid flow in porous media. To study soil behavior (as a granular porous media) and water and contaminant movement in the vadose zone, appropriate estimation of soil water retention curve (SWRC) and soil hydraulic conductivity curve (SHCC) has a pivotal role and is one of the most challenging topics for researchers and engineers in soil and water science. The SWCR can be approximated using an accurate particle size distribution (PSD) function. In this study by applying random close packing (RCP) method as an encouraging method for predicting and studying particle configuration, an optimal particle size distribution is developed for coarse-grained soils (0.025 mm < PSD < 3.35mm). The mentioned RCP is generated using heuristic algorithm with merging applicable equations of soil science. For porous media modeling, MATLAB software is used and the predicted results by the optimal model for the parameters of porosity, pressure drop, and saturated hydraulic conductivity are compared with laboratory measurements. Experimental design is conducted by MINITAB and predicted coarse-grained soils structure by the model is compared with 4 sifted soils. The results of the sensitivity analysis showed that the porosity obtained from the model is strongly sensitive to the resolution factor and should be chosen with a sufficiently large amount (higher than 250). Results showed good consistency (up to 95%) between predicted porosity and only 10% difference in pressure drop and permeability with observed measurements.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1448
Author(s):  
Joseph Y. Fu ◽  
Xiang’an Yue ◽  
Bo Zhang

In petroleum, geological and environmental science, flow through porous media is conventionally studied complementarily with numerical modeling/simulation and experimental corefloods. Despite advances in numerical modeling/simulation, experimental corefloods with actual samples are still desired for higher-specificity testing or more complex mechanistic studies. In these applications, the lack of advances in physical modeling is very apparent with the available options mostly unchanged for decades (e.g., sandpacks of unconsolidated packing materials, industry-accepted substitutes with fixed/mismatching petrophysical properties such as Berea sandstone). Renewable synthetic porous media with adjustable parameters are the most promising but have not advanced adequately. To address this, a methodology of advanced physical modeling of the fundamental parameters of dominant mineralogy, particle size distribution, packing, and cementation of a target natural porous media is introduced. Based upon the tight physical modeling of these four fundamental parameters, the other derived parameters of interests including wettability, porosity, pore throat size distribution, permeability, and capillary pressure can be concurrently modeled very close as well by further fine-tuning one of the fundamental parameters while holding the rest constant. Through this process, concurrent multi-parametric physical modeling of the primary petrophysical parameters including particle size distribution, wettability, porosity, pore throat size distribution, permeability, capillary pressure behavior in a target sandstone becomes possible.


2019 ◽  
Vol 574 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongxia Li ◽  
Junwei Wan ◽  
Hongbin Zhan ◽  
Xi Cheng ◽  
Wei Chang ◽  
...  

2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

Sign in / Sign up

Export Citation Format

Share Document