scholarly journals Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ying Wang ◽  
Martin Saxtorph Bojer ◽  
Shilpa Elizabeth George ◽  
Zhihao Wang ◽  
Peter Ruhdal Jensen ◽  
...  
Author(s):  
Marie-Laure Pinel-Marie ◽  
Régine Brielle ◽  
Camille Riffaud ◽  
Noëlla Germain-Amiot ◽  
Norbert Polacek ◽  
...  

2013 ◽  
Vol 79 (23) ◽  
pp. 7116-7121 ◽  
Author(s):  
Thomas K. Wood ◽  
Stephen J. Knabel ◽  
Brian W. Kwan

ABSTRACTBacterial cells may escape the effects of antibiotics without undergoing genetic change; these cells are known as persisters. Unlike resistant cells that grow in the presence of antibiotics, persister cells do not grow in the presence of antibiotics. These persister cells are a small fraction of exponentially growing cells (due to carryover from the inoculum) but become a significant fraction in the stationary phase and in biofilms (up to 1%). Critically, persister cells may be a major cause of chronic infections. The mechanism of persister cell formation is not well understood, and even the metabolic state of these cells is debated. Here, we review studies relevant to the formation of persister cells and their metabolic state and conclude that the best model for persister cells is still dormancy, with the latest mechanistic studies shedding light on how cells reach this dormant state.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Gyan S. Sahukhal ◽  
Shanti Pandey ◽  
Mohamed O. Elasri

2005 ◽  
Vol 187 (13) ◽  
pp. 4488-4496 ◽  
Author(s):  
Indranil Chatterjee ◽  
Petra Becker ◽  
Matthias Grundmeier ◽  
Markus Bischoff ◽  
Greg A. Somerville ◽  
...  

ABSTRACT The ability of Staphylococcus aureus to adapt to various conditions of stress is the result of a complex regulatory response. Previously, it has been demonstrated that Clp homologues are important for a variety of stress conditions, and our laboratory has shown that a clpC homologue was highly expressed in the S. aureus strain DSM20231 during biofilm formation relative to expression in planktonic cells. Persistence and long-term survival are a hallmark of biofilm-associated staphylococcal infections, as cure frequently fails even in the presence of bactericidal antimicrobials. To determine the role of clpC in this context, we performed metabolic, gene expression, and long-term growth and survival analyses of DSM20231 as well as an isogenic clpC allelic-replacement mutant, a sigB mutant, and a clpC sigB double mutant. As expected, the clpC mutant showed increased sensitivity to oxidative and heat stresses. Unanticipated, however, was the reduced expression of the tricarboxylic acid (TCA) cycle gene citB (encoding aconitase), resulting in the loss of aconitase activity and preventing the catabolization of acetate during the stationary phase. clpC inactivation abolished post-stationary-phase recovery but also resulted in significantly enhanced stationary-phase survival compared to that of the wild-type strain. These data demonstrate the critical role of the ClpC ATPase in regulating the TCA cycle and implicate ClpC as being important for recovery from the stationary phase and also for entering the death phase. Understanding the stationary- and post-stationary-phase recovery in S. aureus may have important clinical implications, as little is known about the mechanisms of long-term persistence of chronic S. aureus infections associated with formation of biofilms.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mara Baldry ◽  
Martin S. Bojer ◽  
Zahra Najarzadeh ◽  
Martin Vestergaard ◽  
Rikke Louise Meyer ◽  
...  

Microbiology ◽  
2020 ◽  
Vol 166 (7) ◽  
pp. 654-658 ◽  
Author(s):  
Liping Liu ◽  
Ying Wang ◽  
Martin Saxtorph Bojer ◽  
Paal Skytt Andersen ◽  
Hanne Ingmer

Bacterial persisters form a subpopulation of cells that survive lethal concentrations of antibiotics without being genetically different from the susceptible population. They are generally considered to be phenotypic variants that spontaneously have entered a dormant state with low ATP levels or reduced membrane potential. In Staphylococcus aureus , a serious opportunistic human pathogen, persisters are believed to contribute to chronic infections that are a major global healthcare problem. While S. aureus persisters have mostly been studied in laboratory strains, we have here investigated the ability of clinical strains to form persisters. For 44 clinical strains belonging to the major clonal complexes CC5, CC8, CC30 or CC45, we examined persister cell formation in stationary phase when exposed to 100 times the MIC of ciprofloxacin, an antibiotic that targets DNA replication. We find that while all strains are able to form persisters, those belonging to CC30 displayed on average 100-fold higher persister cell frequencies when compared to strains of other CCs. Importantly, there was no correlation between persister formation and the cellular ATP content of the individual strains, but the group of CC30 strains displayed slightly lower membrane potential compared to the non-CC30 group. CC30 strains have previously been associated with chronic and reoccuring infections and we hypothesize that there could be a correlation between lineage-specific characteristics displayed via in vitro persister assays and the observed clinical spectrum of disease.


2021 ◽  
Vol 65 (1) ◽  
pp. 113-117
Author(s):  
Mandana Hosseini ◽  
Jamileh Nowroozi ◽  
Nour Amirmozafari

Persister cells are defi ned as a subpopulation of bacteria in a dormant state with the ability to reduce bacterial metabolism and they are involved in antibiotic tolerance. Toxin-antitoxin (TA) systems have been previously suggested as important players in persistence. Therefore, this study aimed to study the involvement of TA systems in persister cell formation in methicillin-resistant Staphylococcus aureus following antibiotic exposure. Using TADB and RASTA database, two type II TA systems including MazF/MazE and RelE/RelB were predicted in S. aureus. The presence of these TA genes was determined in 5 methicillin-resistant S. aureus isolates and the standard strain S. aureus subsp. aureus N315 using PCR method. To induce persistence, isolates were exposed to lethal doses of ciprofl oxacin and the expression of the studied TA system genes was measured after 5 h using Real-Time PCR. According to our results, all the studied isolates harbored the TA system genes. S. aureus was highly capable of persister cell formation following exposure to sub-MIC of ciprofl oxacin and RT-qPCR showed a signifi cant increase in the expression of the MazEF and RelBE loci, indicating their potential role in antibiotic tolerance. Considering the importance of antibiotic tolerance, further studies on persister cell formation and TA systems involved in this phenomenon are required to effi ciently target these systems.


2007 ◽  
Vol 51 (12) ◽  
pp. 4255-4260 ◽  
Author(s):  
Carmela T. M. Mascio ◽  
Jeff D. Alder ◽  
Jared A. Silverman

ABSTRACT Most antibiotics with bactericidal activity require that the bacteria be actively dividing to produce rapid killing. However, in many infections, such as endocarditis, prosthetic joint infections, and infected embedded catheters, the bacteria divide slowly or not at all. Daptomycin is a lipopeptide antibiotic with a distinct mechanism of action that targets the cytoplasmic membrane of gram-positive organisms, including Staphylococcus aureus. Daptomycin is rapidly bactericidal against exponentially growing bacteria (a 3-log reduction in 60 min). The objectives of this study were to determine if daptomycin is bactericidal against nondividing S. aureus and to quantify the extent of the bactericidal activity. In high-inoculum methicillin-sensitive S. aureus cultures in stationary phase (1010 CFU/ml), daptomycin displayed concentration-dependent bactericidal activity, requiring 32 μg/ml to achieve a 3-log reduction. In a study comparing several antibiotics at 100 μg/ml, daptomycin demonstrated faster bactericidal activity than nafcillin, ciprofloxacin, gentamicin, and vancomycin. In experiments where bacterial cell growth was halted by the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or erythromycin, daptomycin (10 μg/ml) achieved the bactericidal end point (a 3-log reduction) within 2 h. In contrast, ciprofloxacin (10 μg/ml) did not produce bactericidal activity. Daptomycin (2 μg/ml) remained bactericidal against cold-arrested S. aureus, which was protected from the actions of ciprofloxacin and nafcillin. The data presented here suggest that, in contrast to that of other classes of antibiotics, the bactericidal activity of daptomycin does not require cell division or active metabolism, most likely as a consequence of its direct action on the bacterial membrane.


Sign in / Sign up

Export Citation Format

Share Document