scholarly journals Attentional processes in typically developing children as revealed using brain event-related potentials and their source localization in Attention Network Test

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Praghajieeth Raajhen Santhana Gopalan ◽  
Otto Loberg ◽  
Jarmo Arvid Hämäläinen ◽  
Paavo H. T. Leppänen
2010 ◽  
Vol 76 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Andres H. Neuhaus ◽  
Carsten Urbanek ◽  
Carolin Opgen-Rhein ◽  
Eric Hahn ◽  
Thi Minh Tam Ta ◽  
...  

Author(s):  
Alejandro Galvao-Carmona ◽  
Javier J. González-Rosa ◽  
Antonio R. Hidalgo-Muñoz ◽  
Dolores Páramo ◽  
María L. Benítez ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Praghajieeth Raajhen Santhana Gopalan ◽  
Otto Loberg ◽  
Kaisa Lohvansuu ◽  
Bruce McCandliss ◽  
Jarmo Hämäläinen ◽  
...  

2020 ◽  
Author(s):  
Patrick Dwyer ◽  
Xiaodong Wang ◽  
Rosanna De Meo-Monteil ◽  
Fushing Hsieh ◽  
Clifford D. Saron ◽  
...  

Abstract Background: Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily used questionnaires and have rarely investigated sensory processing in Typical Development (TD) alongside Autism Spectrum Development (ASD). Methods: The present study used hierarchical clustering in a large sample to identify subgroups of young autistic and typically-developing children based the normalized global field power (GFP) of their event-related potentials (ERPs) to auditory stimuli of four different loudness intensities (50, 60, 70, 80 dB SPL): that is, based on an index of the relative strengths of their neural responses across these loudness conditions. Results: Four clusters of participants were defined. Normalized GFP responses to sounds of different intensities differed strongly across clusters. There was considerable overlap in cluster assignments of autistic and typically-developing participants, but autistic participants were more likely to display a pattern of relatively linear increases in response strength accompanied by a disproportionately strong response to 70 dB stimuli. Autistic participants displaying this pattern trended towards obtaining higher scores on assessments of cognitive abilities. There was also a trend for typically-developing participants to disproportionately fall into a cluster characterized by disproportionately/nonlinearly strong 60 dB responses. Greater auditory distractibility was reported among autistic participants in a cluster characterized by disproportionately strong responses to the loudest (80 dB) sounds, and furthermore, relatively strong responses to loud sounds were correlated with both auditory distractibility and noise distress. This appears to provide evidence of coinciding behavioural and neural sensory atypicalities. Limitations : Replication may be needed to verify exploratory results. This analysis may ignore some variability related to classical ERP latencies and topographies. The sensory questionnaire employed was not specifically designed for use in autism. Variability in sensory responses unrelated to loudness is ignored, leaving much room for additional research. Conclusions: Taken together, these data demonstrate the broader benefits of using electrophysiology to explore individual differences. They illuminate different neural response patterns and suggest relationships between sensory neural responses and sensory behaviours, cognitive abilities, and autism diagnostic status.


2020 ◽  
Author(s):  
Patrick Dwyer ◽  
Xiaodong Wang ◽  
Rosanna De Meo-Monteil ◽  
Fushing Hsieh ◽  
Clifford D. Saron ◽  
...  

Abstract Background: Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily used questionnaires and have rarely investigated sensory processing in Typical Development (TD) alongside Autism Spectrum Development (ASD). Methods: The present study used hierarchical clustering in a large sample to identify subgroups of young autistic and typically-developing children based the normalized global field power (GFP) of their event-related potentials (ERPs) to auditory stimuli of four different loudness intensities (50, 60, 70, 80 dB SPL): that is, based on an index of the relative strengths of their neural responses across these loudness conditions. Results: Four clusters of participants were defined. Normalized GFP responses to sounds of different intensities differed strongly across clusters. There was considerable overlap in cluster assignments of autistic and typically-developing participants, but autistic participants were more likely to display a pattern of relatively linear increases in response strength accompanied by a disproportionately strong response to 70 dB stimuli. Autistic participants displaying this pattern trended towards obtaining higher scores on assessments of cognitive abilities. There was also a trend for typically-developing participants to disproportionately fall into a cluster characterized by disproportionately/nonlinearly strong 60 dB responses. Greater auditory distractibility was reported among autistic participants in a cluster characterized by disproportionately strong responses to the loudest (80 dB) sounds, and furthermore, relatively strong responses to loud sounds were correlated with both auditory distractibility and noise distress. This appears to provide evidence of coinciding behavioural and neural sensory atypicalities. Limitations : Replication may be needed to verify exploratory results. This analysis may ignore some variability related to classical ERP latencies and topographies. The sensory questionnaire employed was not specifically designed for use in autism. Variability in sensory responses unrelated to loudness is ignored, leaving much room for additional research. Conclusions: Taken together, these data demonstrate the broader benefits of using electrophysiology to explore individual differences. They illuminate different neural response patterns and suggest relationships between sensory neural responses and sensory behaviours, cognitive abilities, and autism diagnostic status.


2016 ◽  
Vol 102 ◽  
pp. 65-79 ◽  
Author(s):  
Ryan S. Williams ◽  
Anna Lena Biel ◽  
Pete Wegier ◽  
Leann K. Lapp ◽  
Benjamin J. Dyson ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kirsten Hilger ◽  
Jona Sassenhagen ◽  
Jan Kühnhausen ◽  
Merle Reuter ◽  
Ulrike Schwarz ◽  
...  

AbstractChildren with attention-deficit/hyperactivity disorder (ADHD) are characterized by symptoms of inattention, impulsivity, and hyperactivity. Neurophysiological correlates of ADHD include changes in the P3 component of event-related brain potentials (ERPs). Motivated by recent advances towards a more dimensional understanding of ADHD, we investigate whether ADHD-related ERP markers relate to continuous variations in attention and executive functioning also in typically-developing children. ERPs were measured while 31 school children (9–11 years) completed an adapted version of the Continuous Performance Task that additionally to inhibitory processes also isolates effects of physical stimulus salience. Children with higher levels of parent-reported ADHD symptoms did not differ in task performance, but exhibited smaller P3 amplitudes related to stimulus salience. Furthermore, ADHD symptoms were associated with the variability of neural responses over time: Children with higher levels of ADHD symptoms demonstrated lower variability in inhibition- and salience-related P3 amplitudes. No effects were observed for ERP latencies and the salience-related N2. By demonstrating that ADHD-associated neurophysiological mechanisms of inhibition and salience processing covary with attention and executive functioning in a children community sample, our study provides neurophysiological support for dimensional models of ADHD. Also, temporal variability in event-related potentials is highlighted as additional indicator of ADHD requiring further investigation.


2019 ◽  
Author(s):  
Rémy Masson ◽  
Yohana Lévêque ◽  
Geneviève Demarquay ◽  
Hesham ElShafei ◽  
Lesly Fornoni ◽  
...  

AbstractObjectivesTo evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings.Methods19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and MEG/EEG were recorded. Event-related potentials and fields (ERPs/ERFs) were processed and source reconstruction was applied to ERFs.ResultsAt the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd).ConclusionsMigraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention.SignificanceThe interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.HighlightsMigraineurs performed as well as healthy participants in an attention task.However, EEG markers of both bottom-up and top-down attention are increased.Migraine is also associated with a facilitated recruitment of the right temporo-parietal junction.


Author(s):  
Adil Deniz Duru ◽  
Ali Bayram ◽  
Tamer Demiralp ◽  
Ahmet Ademoglu

Event-related potentials (ERP) are transient brain responses to cognitive stimuli, and they consist of several stationary events whose temporal frequency content can be characterized in terms of oscillations or rhythms. Precise localization of electrical events in the brain, based on the ERP data recorded from the scalp, has been one of the main challenges of functional brain imaging. Several currentDensity estimation techniques for identifying the electrical sources generating the brain potentials are developed for the so-called neuroelectromagnetic inverse problem in the last three decades (Baillet, Mosher, & Leahy, 2001; Koles, 1998; Michela, Murraya, Lantza, Gonzaleza, Spinellib, & Grave de Peraltaa, 2004; Scherg & von Cramon, 1986).


Sign in / Sign up

Export Citation Format

Share Document