scholarly journals Auditory attention alterations in migraine: a behavioral and MEG/EEG study

2019 ◽  
Author(s):  
Rémy Masson ◽  
Yohana Lévêque ◽  
Geneviève Demarquay ◽  
Hesham ElShafei ◽  
Lesly Fornoni ◽  
...  

AbstractObjectivesTo evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings.Methods19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and MEG/EEG were recorded. Event-related potentials and fields (ERPs/ERFs) were processed and source reconstruction was applied to ERFs.ResultsAt the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd).ConclusionsMigraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention.SignificanceThe interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.HighlightsMigraineurs performed as well as healthy participants in an attention task.However, EEG markers of both bottom-up and top-down attention are increased.Migraine is also associated with a facilitated recruitment of the right temporo-parietal junction.

2021 ◽  
Author(s):  
Perrine Ruby ◽  
Rémy Masson ◽  
Benoît Chatard ◽  
Roxane S Hoyer ◽  
Laure Bottemane ◽  
...  

Event-related potentials (ERPs) associated with the involuntary orientation of (bottom-up) attention towards an unexpected sound are of larger amplitude in high dream recallers (HR) than in low dream recallers (LR) during passive listening, suggesting different attentional functioning. We measured bottom-up and top-down attentional performance and their cerebral correlates in 18 HR (11 women, age = 22.7 +/- 4.1 years, dream recall frequency = 5.3 +/- 1.3 days with a dream recall per week) and 19 LR (10 women, age = 22.3, DRF = 0.2 +/- 0.2) using EEG and the Competitive Attention Task. Between-group differences were found in ERPs but not in behavior. The results confirm that HR present larger ERPs to distracting sounds than LR during active listening, suggesting enhanced bottom-up processing of irrelevant sounds. HR also presented a larger contingent negative variation during target expectancy and a larger P3b response to target sounds than LR, speaking for an enhanced recruitment of top-down attention. Enhancement of both top-down and bottom-up processes in HR leads to an apparently preserved attentional balance since similar performance were observed in the two groups. Therefore, different neurophysiological profiles can result in similar cognitive performance, with some profiles possibly costlier in term of resource/energy consumption.


2012 ◽  
Vol 107 (3) ◽  
pp. 859-867 ◽  
Author(s):  
Duncan E. Astle ◽  
Elena Nixon ◽  
Stephen R. Jackson ◽  
Georgina M. Jackson

Previous research demonstrates that our apparent mental flexibility depends largely on the strength of our prior intention; changing our intention in advance enables a smooth transition from one task to another (e.g., Astle DE, Jackson GM, Swainson R. J Cogn Neurosci 20: 255–267, 2008; Duncan J, Emslie H, Williams P, Johnson R, Freer C. Cogn Psychol 30: 257–303, 1996; Husain M, Parton A, Hodgson TL, Mort D, Rees G. Nat Neurosci 6: 117–118, 2003). However, these necessarily rapid anticipatory mechanisms have been difficult to study in the human brain. We used EEG and magnetoencephalography, specifically event-related potentials and fields (ERPs and ERFs), respectively, to explore the neural correlates of this important aspect of mental flexibility. Subjects performed a manual version of a pro/antisaccade task using preparatory cues to switch between the pro- and antirules. When subjects switched their intention, we observed a positivity over central electrodes, which correlated significantly with our behavioral data; the greater the ERP effect, the stronger the subject's change of intention. ERFs, alongside subject-specific structural MRIs, were used to project into source space. When subjects switched their intention, they showed significantly elevated activity in the right frontal eye field and left intraparietal sulcus (IPS); the greater the left IPS activity on switch trials, the stronger the subject's change of intention. This network has previously been implicated in the top-down control of eye movements, but here we demonstrate its role in the top-down control of a task set, in particular, that it is recruited when we change the task that we intend to perform.


2006 ◽  
Vol 18 (5) ◽  
pp. 689-700 ◽  
Author(s):  
M. Sabri ◽  
E. Liebenthal ◽  
E. J. Waldron ◽  
D. A. Medler ◽  
J. R. Binder

Little is known about the neural mechanisms that control attentional modulation of deviance detection in the auditory modality. In this study, we manipulated the difficulty of a primary task to test the relation between task difficulty and the detection of infrequent, task-irrelevant deviant (D) tones (1300 Hz) presented among repetitive standard (S) tones (1000 Hz). Simultaneous functional magnetic resonance imaging (fMRI)/event-related potentials (ERPs) were recorded from 21 subjects performing a two-alternative forced-choice duration discrimination task (short and long tones of equal probability). The duration of the short tone was always 50 msec. The duration of the long tone was 100 msec in the easy task and 60 msec in the difficult task. As expected, response accuracy decreased and response time (RT) increased in the difficult compared with the easy task. Performance was also poorer for D than for S tones, indicating distraction by task-irrelevant frequency information on trials involving D tones. In the difficult task, an amplitude increase was observed in the difference waves for N1 and P3a, ERP components associated with increased attention to deviant sounds. The mismatch negativity (MMN) response, associated with passive deviant detection, was larger in the easy task, demonstrating the susceptibility of this component to attentional manipulations. The fMRI contrast D > S in the difficult task revealed activation on the right superior temporal gyrus (STG) and extending ventrally into the superior temporal sulcus, suggesting this region's involvement in involuntary attention shifting toward unattended, infrequent sounds. Conversely, passive deviance detection, as reflected by the MMN, was associated with more dorsal activation on the STG. These results are consistent with the view that the dorsal STG region is responsive to mismatches between the memory trace of the standard and the incoming deviant sound, whereas the ventral STG region is activated by involuntary shifts of attention to task-irrelevant auditory features.


2017 ◽  
Author(s):  
L Berkovitch ◽  
A Del Cul ◽  
M Maheu ◽  
S Dehaene

AbstractPrevious research suggests that the conscious perception of a masked stimulus is impaired in schizophrenia, while unconscious bottom-up processing of the same stimulus, as assessed by subliminal priming, can be preserved. Here, we test this postulated dissociation between intact bottom-up and impaired top-down processing and evaluate its brain mechanisms using high-density recordings of event-related potentials. Sixteen patients with schizophrenia and sixteen controls were exposed to peripheral digits with various degrees of visibility, under conditions of either focused attention or distraction by another task. In the distraction condition, the brain activity evoked by masked digits was drastically reduced in both groups, but early bottom-up visual activation could still be detected and did not differ between patients and controls. By contrast, under focused top-down attention, a major impairment was observed: in patients, contrary to controls, the late non-linear ignition associated with the P3 component was reduced. Interestingly, the patients showed an essentially normal attentional amplification of the PI and N2 components. These results suggest that some but not all top-down attentional amplification processes are impaired in schizophrenia, while bottom-up processing seems to be preserved.


2009 ◽  
Vol 21 (10) ◽  
pp. 1893-1906 ◽  
Author(s):  
Amy S. Desroches ◽  
Randy Lynn Newman ◽  
Marc F. Joanisse

Behavioral and modeling evidence suggests that words compete for recognition during auditory word identification, and that phonological similarity is a driving factor in this competition. The present study used event-related potentials (ERPs) to examine the temporal dynamics of different types of phonological competition (i.e., cohort and rhyme). ERPs were recorded during a novel picture–word matching task, where a target picture was followed by an auditory word that either matched the target (CONE–cone), or mismatched in one of three ways: rhyme (CONE–bone), cohort (CONE–comb), and unrelated (CONE–fox). Rhymes and cohorts differentially modulated two distinct ERP components, the phonological mismatch negativity and the N400, revealing the influences of prelexical and lexical processing components in speech recognition. Cohort mismatches resulted in late increased negativity in the N400, reflecting disambiguation of the later point of miscue and the combined influences of top–down expectations and misleading bottom–up phonological information on processing. In contrast, we observed a reduction in the N400 for rhyme mismatches, reflecting lexical activation of rhyme competitors. Moreover, the observed rhyme effects suggest that there is an interaction between phoneme-level and lexical-level information in the recognition of spoken words. The results support the theory that both levels of information are engaged in parallel during auditory word recognition in a way that permits both bottom–up and top–down competition effects.


2007 ◽  
Vol 40 (05) ◽  
Author(s):  
AH Neuhaus ◽  
TE Goldberg ◽  
Y Hassoun ◽  
JA Bates ◽  
KW Nassauer ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
John Stein

(1) Background—the magnocellular hypothesis proposes that impaired development of the visual timing systems in the brain that are mediated by magnocellular (M-) neurons is a major cause of dyslexia. Their function can now be assessed quite easily by analysing averaged visually evoked event-related potentials (VERPs) in the electroencephalogram (EEG). Such analysis might provide a useful, objective biomarker for diagnosing developmental dyslexia. (2) Methods—in adult dyslexics and normally reading controls, we recorded steady state VERPs, and their frequency content was computed using the fast Fourier transform. The visual stimulus was a black and white checker board whose checks reversed contrast every 100 ms. M- cells respond to this stimulus mainly at 10 Hz, whereas parvocells (P-) do so at 5 Hz. Left and right visual hemifields were stimulated separately in some subjects to see if there were latency differences between the M- inputs to the right vs. left hemispheres, and these were compared with the subjects’ handedness. (3) Results—Controls demonstrated a larger 10 Hz than 5 Hz fundamental peak in the spectra, whereas the dyslexics showed the reverse pattern. The ratio of subjects’ 10/5 Hz amplitudes predicted their reading ability. The latency of the 10 Hz peak was shorter during left than during right hemifield stimulation, and shorter in controls than in dyslexics. The latter correlated weakly with their handedness. (4) Conclusion—Steady state visual ERPs may conveniently be used to identify developmental dyslexia. However, due to the limited numbers of subjects in each sub-study, these results need confirmation.


Sign in / Sign up

Export Citation Format

Share Document