scholarly journals Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qichao Zhang ◽  
Min Zheng ◽  
Yanliang Huang ◽  
Hans Joerg Kunte ◽  
Xiutong Wang ◽  
...  
2010 ◽  
Vol 1265 ◽  
Author(s):  
Jean-Francois Lucchini ◽  
Hnin Khaing ◽  
Donald T. Reed

AbstractWhen present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is present in significant quantities, with about 647 metric tons to be placed in the repository [1]. Therefore, the chemistry of uranium, and especially its solubility, needs to be determined under WIPP-relevant conditions.Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pCH+ values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first WIPP repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brine and a lack of amphotericity. At the expected pCH+ in the WIPP (˜ 9.5), measured uranium solubility approached 10-7 M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines, during the ongoing research program in actinide solubility under WIPP-relevant conditions.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Raul B. Rebak

ABSTRACTAll the countries that operate commercial nuclear power plants are planning to dispose of the waste in underground geologically stable repositories. The materials being studied for the fabrication of the containers include carbon steel, stainless steel, copper, titanium and nickel alloys. The aim of this work is to review results from research performed using the alloys of interest regarding their resistance to environmentally assisted cracking (EAC) under simulated repository conditions. In general, it is concluded that the environments are mild and that the studied metals may not be susceptible to cracking under the planned emplacement conditions.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 120 ◽  
Author(s):  
Adam Atchley ◽  
Kay Birdsell ◽  
Kelly Crowell ◽  
Richard Middleton ◽  
Philip Stauffer

Long-term environmental performance assessments of natural processes, including erosion, are critically important for waste repository site evaluation. However, assessing a site’s ability to continuously function is challenging due to parameter uncertainty and compounding nonlinear processes. In lieu of unavailable site data for model calibration, we present a workflow to include multiple sources of surrogate data and reduced-order models to validate parameters for a long-term erosion assessment of a low-level radioactive nuclear waste repository. We apply this new workflow to a low-level waste repository on mesas in Los Alamos National Laboratory in New Mexico. To account for parameter uncertainty, we simulate high-, moderate-, and low-erosion cases. The assessment extends to 10,000 years, which results in large erosion uncertainties, but is necessary given the nature of the interred waste. Our long-term erosion analysis shows that high-erosion scenarios produce rounded mesa tops and partially filled canyons, diverging from the moderate-erosion case that results in gullies and sharp mesa rims. Our novel model parameterization workflow and modeling exercise demonstrates the utility of long-term assessments, identifies sources of erosion forecast uncertainty, and demonstrates the utility of landscape evolution model development. We conclude with a discussion on methods to reduce assessment uncertainty and increase model confidence.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Autio ◽  
A. Hautojärvi ◽  
J-P. Salo

ABSTRACTThe excavation damaged rock zone (EDZ) adjacent to the surface of deposition holes in a nuclear waste repository has been considered to be a potential pathway for the flow of water and the migration of radionuclides diffusing out of a waste canister via the bentonite barrier. The properties of the excavation-damaged rock zone adjacent to the surface of experimental deposition holes in the Research Tunnel at Olkiluoto on the southwest coast of Finland have been measured and are used in this study to evaluate the effect of the excavation damaged rock zone on the transport of radionuclides escaping from a waste canister. Since the hydraulic conductivity of compacted bentonite is low, the predominant mode of migration of nuclides through such material will be diffusion. The effect of the excavation-damaged rock zone on the transport of radionuclides was analyzed by comparing two different cases: 1) diffusion through the bentonite and 2) transport through the excavation damaged rock zone by the processes of advection and diffusion. According to this study, hydraulic gradients three orders of magnitude higher than those estimated to currently exist would be required to achieve the transfer of significant quantities of non-sorbing neutral nuclides through the excavation-damaged rock zone. According to this evaluation, the excavation damaged rock zone is unlikely to be a significant migration route in normal cases in the absence of large hydraulic gradients.


Sign in / Sign up

Export Citation Format

Share Document