scholarly journals A strategy of designing high-entropy alloys with high-temperature shape memory effect

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Je In Lee ◽  
Koichi Tsuchiya ◽  
Wataru Tasaki ◽  
Hyun Seok Oh ◽  
Takahiro Sawaguchi ◽  
...  

Abstract Shape memory effect, the ability to recover a pre-deformed shape on heating, results from a reversible martensitic transformation between austenite and martensite phases. Here, we demonstrate a strategy of designing high-entropy alloys (HEAs) with high-temperature shape memory effect in the CrMnFeCoNi alloy system. First, we calculate the difference in Gibbs free energy between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) phases, and find a substantial increase in thermodynamic equilibrium temperature between the FCC and HCP phases through composition tuning, leading to thermally- and stress-induced martensitic transformations. As a consequence, the shape recovery temperature in non-equiatomic CrMnFeCoNi alloys can be increased to 698 K, which is much higher than that of conventional shape memory alloys (SMAs) and comparable to that of B2-based multi-component SMAs containing noble metals (Pd, Pt, etc.) or refractory metals (Zr, Hf, etc.). This result opens a vast field of applications of HEAs as a novel class of cost-effective high-temperature SMAs.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


2006 ◽  
Vol 41 (18) ◽  
pp. 6165-6167 ◽  
Author(s):  
Z. Y. Gao ◽  
Y. Wu ◽  
Y. X. Tong ◽  
W. Cai ◽  
Y. F. Zheng ◽  
...  

2019 ◽  
Vol 163 ◽  
pp. 1-13 ◽  
Author(s):  
C. Hayrettin ◽  
O. Karakoc ◽  
I. Karaman ◽  
J.H. Mabe ◽  
R. Santamarta ◽  
...  

2010 ◽  
Vol 10 ◽  
pp. 94-98 ◽  
Author(s):  
V.A. Chernenko ◽  
E. Villa ◽  
S. Besseghini ◽  
J.M. Barandiaran

2014 ◽  
Vol 936 ◽  
pp. 140-144 ◽  
Author(s):  
Jia Ying ◽  
Masaaki Nishikawa ◽  
Masaki Hojo

The relationship of annealing and shape memory effect of uniaxially oriented shape memory polyurethane was studied; meanwhile a new method of adjusting shape recovery ratio by annealing was proposed for further consideration. Experiments were designed to compare the influence on length change from annealing and shape memory effect with shape memory polyurethane film at 65°C. We found that for shape memory polyurethane which had residual strain from material processing procedure, annealing and shape memory effect have the same effect on its length change if they are both carried out at the same temperature. It is because annealing and shape memory effect have the same mechanism, which is the change of state from low conformational entropy states to the recovery of a stable high entropy state in the polymer. Moreover, it is proved by experiment that shape recovery ratio of shape memory polyurethane can be adjusted by annealing.


2017 ◽  
Vol 62 (12) ◽  
pp. 1843-1847 ◽  
Author(s):  
A. V. Pushin ◽  
V. G. Pushin ◽  
T. E. Kuntsevich ◽  
N. N. Kuranova ◽  
V. V. Makarov ◽  
...  

2019 ◽  
Vol 60 (11) ◽  
pp. 2282-2291 ◽  
Author(s):  
Hiromichi Matsuda ◽  
Hirotaka Sato ◽  
Masayuki Shimojo ◽  
Yoko Yamabe-Mitarai

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4227 ◽  
Author(s):  
Tetiana A. Kosorukova ◽  
Gregory Gerstein ◽  
Valerii V. Odnosum ◽  
Yuri N. Koval ◽  
Hans Jürgen Maier ◽  
...  

The present study is dedicated to the microstructure characterization of the as-cast high entropy intermetallics that undergo a martensitic transformation, which is associated with the shape memory effect. It is shown that the TiZrHfCoNiCu system exhibits strong dendritic liquation, which leads to the formation of martensite crystals inside the dendrites. In contrast, in the CoNiCuAlGaIn system the dendritic liquation allows the martensite crystals to form only in interdendritic regions. This phenomenon together with the peculiarities of chemical inhomogeneities formed upon crystallization of this novel multicomponent shape memory alloys systems will be analyzed and discussed.


2020 ◽  
Vol 51 (9) ◽  
pp. 4439-4441
Author(s):  
Motomichi Koyama ◽  
Chunxi Hao ◽  
Eiji Akiyama ◽  
Kaneaki Tsuzaki

Sign in / Sign up

Export Citation Format

Share Document