Hydrogen Enhances Shape Memory Effect of a Ferrous Face-Centered Cubic Alloy

2020 ◽  
Vol 51 (9) ◽  
pp. 4439-4441
Author(s):  
Motomichi Koyama ◽  
Chunxi Hao ◽  
Eiji Akiyama ◽  
Kaneaki Tsuzaki
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Je In Lee ◽  
Koichi Tsuchiya ◽  
Wataru Tasaki ◽  
Hyun Seok Oh ◽  
Takahiro Sawaguchi ◽  
...  

Abstract Shape memory effect, the ability to recover a pre-deformed shape on heating, results from a reversible martensitic transformation between austenite and martensite phases. Here, we demonstrate a strategy of designing high-entropy alloys (HEAs) with high-temperature shape memory effect in the CrMnFeCoNi alloy system. First, we calculate the difference in Gibbs free energy between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) phases, and find a substantial increase in thermodynamic equilibrium temperature between the FCC and HCP phases through composition tuning, leading to thermally- and stress-induced martensitic transformations. As a consequence, the shape recovery temperature in non-equiatomic CrMnFeCoNi alloys can be increased to 698 K, which is much higher than that of conventional shape memory alloys (SMAs) and comparable to that of B2-based multi-component SMAs containing noble metals (Pd, Pt, etc.) or refractory metals (Zr, Hf, etc.). This result opens a vast field of applications of HEAs as a novel class of cost-effective high-temperature SMAs.


Author(s):  
F. I. Grace

An interest in NiTi alloys with near stoichiometric composition (55 NiTi) has intensified since they were found to exhibit a unique mechanical shape memory effect at the Naval Ordnance Laboratory some twelve years ago (thus refered to as NITINOL alloys). Since then, the microstructural mechanisms associated with the shape memory effect have been investigated and several interesting engineering applications have appeared.The shape memory effect implies that the alloy deformed from an initial shape will spontaneously return to that initial state upon heating. This behavior is reported to be related to a diffusionless shear transformation which takes place between similar but slightly different CsCl type structures.


2003 ◽  
Vol 112 ◽  
pp. 1177-1180 ◽  
Author(s):  
A. Schuster ◽  
H. F. Voggenreiter ◽  
D. C. Dunand ◽  
G. Eggeler

2003 ◽  
Vol 112 ◽  
pp. 765-768 ◽  
Author(s):  
Y. Bellouard ◽  
R. Clavel ◽  
R. Gotthardt ◽  
J. van Humbeeck

Author(s):  
M Bolat ◽  
A Ciocan-Pendefunda ◽  
Z Surlari ◽  
C Bida ◽  
C Balcos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document