scholarly journals Potential scrapie-associated polymorphisms of the prion protein gene (PRNP) in Korean native black goats

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seon-Kwan Kim ◽  
Yong-Chan Kim ◽  
Sae-Young Won ◽  
Byung-Hoon Jeong

Abstract Small ruminants, including sheep and goats are natural hosts of scrapie, and the progression of scrapie pathogenesis is strongly influenced by polymorphisms in the prion protein gene (PRNP). Although Korean native goats have been consumed as meat and health food, the evaluation of the susceptibility to scrapie in these goats has not been performed thus far. Therefore, we investigated the genotype and allele frequencies of PRNP polymorphisms in 211 Korean native goats and compared them with those in scrapie-affected animals from previous studies. We found a total of 12 single nucleotide polymorphisms (SNPs) including 10 nonsynonymous and 2 synonymous SNPs in Korean native goats. Significant differences in allele frequencies of PRNP codons 143 and 146 were found between scrapie-affected goats and Korean native goats (p < 0.01). By contrast, in PRNP codons 168, 211 and 222, there were no significant differences in the genotype and allele frequencies between scrapie-affected animals and Korean native goats. To evaluate structural changes caused by nonsynonymous SNPs, PolyPhen-2, PROVEAN and AMYCO analyses were performed. PolyPhen-2 predicted “possibly damaging” for W102G and R154H, “probably damaging” for G127S. AMYCO predicted relatively low for amyloid propensity of prion protein in Korean native black goats. This is the first study to evaluate the scrapie sensitivity and the first in silico evaluation of nonsynonymous SNPs in Korean native black goats.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Byung-Hoon Jeong

Abstract Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt–Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3′ untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as ‘Neutral’ with a score of −0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.


2018 ◽  
Vol 38 (4) ◽  
pp. 624-628
Author(s):  
Caroline P. Andrade ◽  
José D. Barbosa Neto ◽  
David Driemeier

ABSTRACT: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep and goats and results from accumulation of the abnormal isoform of a prion protein in the central nervous system. Resistance or susceptibility to the disease is dependent on several factors, including the strain of infecting agent, the degree of exposure, and the presence of single nucleotide polymorphisms (SNPs) in the prion protein gene. The most important polymorphisms are present in codons 136, 154, and 171. SNPs have also been identified in other codons, such as 118, 127, 141, 142, and 143. The objective of this study was to investigate the genotypic profile of Santa Ines (n=94) and Dorset (n=69) sheep and identify polymorphisms in the prion protein gene using real-time PCR techniques and sequencing. We analyzed SNPs in 10 different codons (127, 136, 138, 140, 141, 142, 143, 154, 171, and 172) in Santa Ines sheep. Classification of the flock into risk groups associated with scrapie revealed that approximately 68% of the Santa Ines herd was considered at moderate risk (group 3), and the most frequent haplotype was ARQ/ARQ (47.8%). For Dorset sheep, 42% of the herd was considered at moderate risk (group 3), 40% at low risk (group 2), and 12% at very low risk (group 1). These findings improve our understanding of the genotype breed and further highlight the importance of genotyping and identification of polymorphisms in Brazilian herds to assess their effects on potential infections upon exposure to the sheep prion.


2005 ◽  
Vol 12 (4) ◽  
pp. 324-326 ◽  
Author(s):  
Liping Meng ◽  
Deming Zhao ◽  
Hongxiang Liu ◽  
Jianmin Yang ◽  
Zhangyong Ning

2012 ◽  
Vol 60 (2) ◽  
pp. 233-243
Author(s):  
Stanislav Hreško ◽  
Ľudmila Tkáčiková

This study was conducted to investigate the presence of single nucleotide polymorphisms (SNPs) in the coding region of the bovine prion protein (PrP) gene among healthy and bovine spongiform encephalopathy (BSE-) affected cattle in Slovakia. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) followed by DNA sequencing were used to identify SNPs and variations in octapeptide repeats. Altogether three single nucleotide polymorphisms (g234a, c339t and c576t) and variations in the number of octapeptide repeat units (5 or 6) were found in the analysed part of the prion protein gene. All single nucleotide polymorphisms were silent, causing no amino acid changes. Significant differences (P < 0.05) in the genotype distribution of g234a polymorphism were observed when the homozygous genotype with a mutated allele (caa/caa) was compared to the heterozygous genotype -/cag among healthy and BSE-affected cattle. The homozygous genotype caa/caa was characteristic of the group of BSE-affected cattle. Additionally, the homozygous genotype caa/caa was significant for the group of Simmental crossbreeds among healthy cattle. The allele and genotype distribution of the other polymorphisms was not significantly different among groups of healthy and BSE-affected cattle. The possible influence of a silent mutation on expression of the gene is not clearly determined and needs further investigations.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 518
Author(s):  
Sae-Young Won ◽  
Yong-Chan Kim ◽  
Kyoungtag Do ◽  
Byung-Hoon Jeong

Prion disease is a fatal neurodegenerative disorder caused by a deleterious prion protein (PrPSc). However, prion disease has not been reported in horses during outbreaks of transmissible spongiform encephalopathies (TSEs) in various animals in the UK. In previous studies, single nucleotide polymorphisms (SNPs) in the prion protein gene (PRNP) have been significantly associated with susceptibility to prion disease, and strong linkage disequilibrium (LD) between PRNP and prion-like protein gene (PRND) SNPs has been identified in prion disease-susceptible species. On the other hand, weak LD values have been reported in dogs, a prion disease-resistant species. In this study, we investigated SNPs in the PRND gene and measured the LD values between the PRNP and PRND SNPs and the impact of a nonsynonymous SNP found in the horse PRND gene. To identify SNPs in the PRND gene, we performed direct sequencing of the PRND gene. In addition, to assess whether the weak LD value between the PRNP and PRND SNPs is a characteristic of prion disease-resistant animals, we measured the LD value between the PRNP and PRND SNPs using D’ and r2 values. Furthermore, we evaluated the impact of a nonsynonymous SNP in the Doppel protein with PolyPhen-2, PROVEAN, and PANTHER. We observed two novel SNPs, c.331G > A (A111T) and c.411G > C. The genotype and allele frequencies of the c.331G > A (A111T) and c.411G > C SNPs were significantly different between Jeju, Halla, and Thoroughbred horses. In addition, we found a total of three haplotypes: GG, AG, and GC. The GG haplotype was the most frequently observed in Jeju and Halla horses. Furthermore, the impact of A111T on the Doppel protein was predicted to be benign by PolyPhen-2, PROVEAN, and PANTHER. Interestingly, a weak LD value between the PRNP and PRND SNPs was found in the horse, a prion disease-resistant animal. To the best of our knowledge, these results suggest that a weak LD value could be one feature of prion disease-resistant animals.


2007 ◽  
Vol 8 (3) ◽  
pp. 299 ◽  
Author(s):  
Hyun-Jeong Jeong ◽  
Joong-Bok Lee ◽  
Seung-Yong Park ◽  
Chang-Seon Song ◽  
Bo-Sook Kim ◽  
...  

2004 ◽  
Vol 85 (10) ◽  
pp. 3165-3172 ◽  
Author(s):  
P. L. Acutis ◽  
L. Sbaiz ◽  
F. Verburg ◽  
M. V. Riina ◽  
G. Ru ◽  
...  

Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele was also found, with the highest frequency reported so far in an ovine breed (2·5 %). ARK/--- genotypes had a total frequency of 4·9 %. The resistance-associated ARR allele was seen at a low frequency (8·3 %). Only 1·4 % of animals examined had a resistant ARR/ARR PrP genotype. Semi-resistant (ARR/ARQ, ARR/ARH and ARR/AHQ) PrP genotypes had a total frequency of 12·6 % and PrP genotypes that are associated with high scrapie susceptibility (e.g. VRQ/VRQ and ARQ/ARQ) had a total frequency of 81·1 %. Statistical analysis comparing PrP allele frequencies between pure-bred and cross-bred animals showed that the ARR allele occurred at a significantly lower frequency in pure-bred rams. Furthermore, comparison of PrP allele frequencies between pure-bred rams over 18 months of age and those below 18 months of age showed a significant decrease in the ARR allele in breeding rams over 18 months of age. Based on these results, breeding for scrapie resistance in the Biellese breed will have to take into account the low frequency of the ARR allele, which also seems to be subject to negative selection by farmers. Further investigation is required to understand whether the ARK allele is also associated with resistance to transmissible spongiform encephalopathies.


Sign in / Sign up

Export Citation Format

Share Document