scholarly journals Generation of late Mesozoic felsic volcanic rocks in the Hailar Basin, northeastern China in response to overprinting of multiple tectonic regimes

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheng Ji ◽  
Qi-An Meng ◽  
Chuan-Biao Wan ◽  
De-Feng Zhu ◽  
Wen-Chun Ge ◽  
...  

Abstract We performed zircon U–Pb age dating and geochemical analyses of late Mesozoic felsic volcanic rocks in the Hailar Basin, NE China, with the aim of eclucidating their emplacement ages, origin and geodynamic significance. The volcanic rocks consist of dacites, rhyolites and rhyolitic tuffs. Laser ablation–inductively coupled plasma–mass spectrometry zircon U–Pb dating results suggest that the rocks were erupted during the Late Jurassic–Early Cretaceous (161–117 Ma). They belong to the high-K calc-alkaline series and can be divided into two groups. Group I rocks are metaluminous to weakly peraluminous, contain low concentrations of heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and have low zircon saturation temperatures (average 786 °C), all of which indicate an I-type affinity. In contrast, Group II rocks have higher HREE and HFSE concentrations and zircon saturation temperatures (average 918 °C), suggesting an A-type affinity. All the felsic volcanic rocks have positive εHf(t) values of 1.43–12.32 with two-stage model ages of 1110–401 Ma. Our data indicate that the I-type felsic volcanic rocks formed from magmas generated by partial melting of a dominantly juvenile mica-bearing K-rich basaltic lower crust, whereas the A-type felsic volcanic rocks originated from the partial melting of a dry mafic–intermediate middle–lower crust that was dehydrated but not melt depleted. Based on the present results and previous research, we propose that the Late Jurassic I- and A-type felsic volcanic rocks in the Hailar Basin were formed in a post-collisional environment related to break-off of the subducted oceanic slab of the Mongol–Okhotsk Ocean and the subsequent gravitational collapse of the orogenically-thickened crust after closure of the ocean. In contrast, the Early Cretaceous I- and A-type felsic volcanic rocks were erupted in an extensional setting related to rollback of the subducted Paleo-Pacific Plate.

1987 ◽  
Vol 24 (12) ◽  
pp. 2551-2567 ◽  
Author(s):  
Osamu Ujike ◽  
A. M. Goodwin

Felsic magma petrogenesis was studied by analyzing 24 stratigraphically controlled Archean andesite-to-rhyolite lava flows of both tholeiitic and calc-alkalic affinity from the upper Noranda Subgroup, Quebec, using instrumental neutron activation and X-ray fluorescence techniques. The lavas have moderate values of [La/Yb]N (0.9–3.8) and low values of 100 × Th/Zr (~1). According to calculations following batch partial melting and Rayleigh fractional crystallization models, both the calc-alkalic and tholeiitic felsic volcanic rocks are probably products of shallow-level fractional crystallization of mafic parental magmas formed respectively by lower (~7 % for calc-alkalic) and higher (~14% for tholeiitic) degrees of partial melting of a primitive mantle source.Contribution to the magma genesis from plausible crustal materials was negligible. A back-arc-type diapirism is geochemically suggested for the tectonic model of origin of Noranda felsic magmas, in conformity with geological observations. Felsic volcanic rocks with compositions analogous to the studied samples exist in several other Archean terrains of the Canadian Shield, suggesting thereby that the late Archean sialic crust was at least in part produced by volcanic rocks ultimately derived from the primitive mantle.


2019 ◽  
Vol 487 (6) ◽  
pp. 653-658
Author(s):  
T. V. Kara ◽  
M. V. Luchitskaya ◽  
S. M. Katkov ◽  
E. A. Belousova

New U-Pb (SIMS and LA-ICP-MS) geochronological data for rocks of Egdygkych complex of hypabyssal intrusions, Nichan and Vukney plutons, and felsic volcanic rocks and tuffs from host strata of Oloy volcanic belt of Alasey-Oloy fold system are obtained. Concordant ages of Egdygkych complex rocks correspond to Early Cretaceous (Berriasian-Valanginian), those for host strata, to the end of Late Jurassic (Tithonian) - beginning of Early Cretaceous (Berriasian). New U-Pb geochronological data allow confidently to distinguish uniform volcanic-plutonic assemblage of Late Jurassic (Tithonian) - Early Cretaceous (Berriasian-Valanginian) age of Oloy volcanic belt. Obtained data more definitely determine age limits of Au-Mo-Cu mineralization, associated with contacts between rocks of Egdydkych complex and host volcanic-sedimentary rocks or contacts of separated intrusive phases.


2018 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  

The felsic volcanic rocks and tuff aged from Late Mesozoic to Kainozoic occur in many places in Viet Nam Territory, such as Tu Le area (in Northwest Region), Binh Gia area, Binh Lieu area (Northest Reigion), Nha Trang area, Dalat area (Central Region). The mafic volcanic ashes aged from Late Neogen to Quarternary distribute in central part of Vietnam such ash Con Co Island, Van Hoa High land. The samples of the tuff rock of Don Duong Stratum collected from field trip in Da Lat area have been treated (burned) at 650oC, 750oC, 900oC. The experimental results show that these materials, after treatment (heating in funace at the temperature 650oC, 750oC and 900oC) expressed absortion capacity up to 90% of selected organic matters (MO, MD) and heavy Metal (Pb2+) in the testing solutions. Among them, the sample heating at 900oC is the best material for Pb2+ absorption. The preliminary results show that the volcalnic felsic rocks and volcanic ashes in Viet Nam, after suitable treatments, can be used as an enviroment treatment materials.


Sign in / Sign up

Export Citation Format

Share Document