scholarly journals Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wenbin Kai ◽  
Ying Fu ◽  
Juan Wang ◽  
Bin Liang ◽  
Qian Li ◽  
...  

AbstractAbscisic acid (ABA) is an important regulator of many plant developmental processes, although its regulation in the pistil during anthesis is unclear. We investigated the role of 9-cis-epoxycarotenoid dioxygenase (SlNCED1), a key ABA biosynthesis enzyme, through overexpression and transcriptome analysis in the tomato pistil. During pistil development, ABA accumulates and SlNCED1 expression increases continually, peaking one day before full bloom, when the maximum amount of ethylene is released in the pistil. ABA accumulation and SlNCED1 expression in the ovary remained high for three days before and after full bloom, but then both declined rapidly four days after full bloom following senescence and petal abscission and expansion of the young fruits. Overexpression of SlNCED1 significantly increased ABA levels and also up-regulated SlPP2C5 expression, which reduced ABA signaling activity. Overexpression of SlNCED1 caused up-regulation of pistil-specific Zinc finger transcription factor genes SlC3H29, SlC3H66, and SlC3HC4, which may have affected the expression of SlNCED1-mediated pistil development-related genes, causing major changes in ovary development. Increased ABA levels are due to SlNCED1 overexpresson which caused a hormonal imbalance resulting in the growth of parthenocarpic fruit. Our results indicate that SlNCED1 plays a crucial role in the regulation of ovary/pistil development and fruit set.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 544
Author(s):  
Jaume Lordan ◽  
Lourdes Zazurca ◽  
Mercè Rovira ◽  
Laura Torguet ◽  
Ignasi Batlle ◽  
...  

Almond is an important tree nut crop worldwide, and planted areas have been increasing year after year. While self-fertility is one of the key factors when it comes to improved almond productivity of new cultivars, yield is also affected by the number of flowers produced, pollination, fruit set, fruit drop, and fruit weight. Almond fruit drop patterns of 20 Mediterranean almond cultivars were studied over three years. In addition, fruit drop patterns of two scion cultivars ‘Marinada’ and ‘Vairo’ budded onto eight to 10 different rootstocks managed with three different pruning strategies were studied for two years. Cumulative flower and fruit drop ranged from 50% to 90% among cultivars and treatments, and there were up to four fruit drop events during the growing season, the main one occurring from 20–60 days from full bloom (DFFB). Subsequent drops were at 100 DFFB, 120–140 DFFB, and the last one at 160–180 DFFB. The later drops were less apparent. In general, about half of the cumulative drop was comprised of buds and flowers, and the remaining percentage was fruit that dropped 20 or more days after full bloom. Furthermore, different fruit drop patterns were observed depending on the cultivar. For late- and extra-late flowering cultivars, cumulative fruit drop began to decrease earlier, with most of the drops occurred already at full bloom, whereas the opposite was observed for the early flowering cultivars. Rootstocks also had an important effect on the fruit drop pattern, with different effects depending on the scion cultivar. Tree management, such as type of pruning, also had an important effect on the rate of fruit drop and cumulative drop. Therefore, each combination of cultivar × rootstock × pruning type will require different strategies in order to reduce the fruit drop and optimize crop loads.


2017 ◽  
Vol 39 (4) ◽  
Author(s):  
MATEUS DA SILVEIRA PASA ◽  
BRUNO CARRA ◽  
CARINA PEREIRA DA SILVA ◽  
MARLISE NARA CIOTTA ◽  
ALBERTO FONTANELLA BRIGHENTI ◽  
...  

ABSTRACT The low fruit set is one of the main factors leading to poor yield of pear orchards in Brazil. Ethylene is associated with abscission of flowers and fruitlets. Then, the application of ethylene synthesis inhibitors, such as AVG, is a potential tool to increase fruit set of pears. The objective of this study was to evaluate the effect of AVG, sprayed at different rates and timings, on fruit set, yield and fruit quality of ‘Rocha’ pear. The study was performed in a commercial orchard located in the municipality of São Joaquim, SC, during the growing seasons of 2014/2015 and 2015/2016. Plant material consisted of ‘Rocha’ pear trees grafted on quince rootstock ‘BA29’. AVG was tested at different rates (60 mg L-1 and 80 mg L-1) and timings [full bloom, one week after full bloom (WAFB), and two WAFB), either alone or in combination. The experiment was arranged in a randomized block design, with at least five single-tree replications. The fruit set, number of fruit per tree, yield, estimated yield, fruit weight, return bloom, and fruit quality attributes were assessed. Fruit set and yield were consistently increased by single applications of AVG at 60 and 80 mg L-1 at both one and two weeks after full bloom, without negatively affecting fruit quality attributes and return bloom.


2010 ◽  
Vol 153 (2) ◽  
pp. 851-862 ◽  
Author(s):  
Juan Carlos Serrani ◽  
Esther Carrera ◽  
Omar Ruiz-Rivero ◽  
Lina Gallego-Giraldo ◽  
Lázaro Eustáquio Pereira Peres ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 12 ◽  
Author(s):  
Inna Chaban ◽  
Ekaterina Baranova ◽  
Neonila Kononenko ◽  
Marat Khaliluev ◽  
Elena Smirnova

The endothelium is an additional cell layer, differentiating from the inner epidermis of the ovule integument. In tomato (Solanum lycopersicum L.), after fertilization, the endothelium separates from integument and becomes an independent tissue developing next to the growing embryo sac. In the absence of fertilization, the endothelium may proliferate and form pseudo-embryo. However, the course of the reorganization of endothelium into pseudo-embryo in tomato ovules is poorly understood. We aimed to investigate specific features of endothelium differentiation and the role of the endothelium in the development of fertilized and unfertilized tomato ovules. The ovules of tomato plants (“YaLF” line), produced by vegetative growth plants of transgenic tomato line expressing the ac gene, encoding chitin-binding protein from Amaranthus caudatus L., were investigated using light and transmission electron microscopy. We showed that in the fertilized ovule of normally developing fruit and in the unfertilized ovule of parthenocarpic fruit, separation of the endothelium from integument occurs via programmed death of cells of the integumental parenchyma, adjacent to the endothelium. Endothelial cells in normally developing ovules change their structural and functional specialization from meristematic to secretory and back to meristematic, and proliferate until seeds fully mature. The secretory activity of the endothelium is necessary for the lysis of dying cells of the integument and provides the space for the growth of the new sporophyte. However, in ovules of parthenocarpic fruits, pseudo-embryo cells do not change their structural and functional organization and remain meristematic, no zone of lysis is formed, and pseudo-embryo cells undergo programmed cell death. Our data shows the key role of the endothelium as a protective and secretory tissue, needed for the normal development of ovules.


2001 ◽  
Vol 81 (4) ◽  
pp. 779-781 ◽  
Author(s):  
A. Randall ◽  
Olson and Leonard J. Eaton

Closed flower buds and flowers at full bloom of Vaccinium angustifolium Ait. were collected from the field and histologically examined after severe spring frosts. Prior to anthesis, blackened ovarian placentae in closed buds were the only damaged tissues evident; placental damage may interfere with both seed and fruit set. Undetected frost damaged placentae may contribute to losses in commercial yield. Key words: Vaccinium, frost damage, placenta


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1707-1715 ◽  
Author(s):  
Salvatore Campisi-Pinto ◽  
Yusheng Zheng ◽  
Philippe E. Rolshausen ◽  
David E. Crowley ◽  
Ben Faber ◽  
...  

Optimizing ‘Hass’ avocado (Persea americana Mill.) tree nutrient status is essential for maximizing productivity. Leaf nutrient analysis is used to guide avocado fertilization to maintain tree nutrition. The goal of this research was to identify a ‘Hass’ avocado tissue with nutrient concentrations predictive of yields greater than 40 kg of fruit per tree. This threshold was specified to assist the California avocado industry to increase yields to ≈11,200 kg·ha−1. Nutrient concentrations of cauliflower stage inflorescences (CSI) collected in March proved better predictors of yield than inflorescences collected at full bloom (FBI) in April, fruit pedicels (FP) collected at five different stages of avocado tree phenology from the end of fruit set in June through April the following spring when mature fruit enter a second period of exponential growth, or 6-month-old spring flush leaves (LF) from nonbearing vegetative shoots collected in September (California avocado industry standard). For CSI tissue, concentrations of seven nutrients, nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), sulfur (S), zinc (Zn), and copper (Cu) were predictive of trees producing greater than 40 kg of fruit annually. Conditional quantile sampling and frequency analysis were used to identify optimum nutrient concentration ranges (ONCR) for each nutrient. Optimum ratios between nutrient concentrations and yields greater than 40 kg per tree were also derived. The high nutrient concentrations characterizing CSI tissue suggest current fertilization practices (timing or amounts) might be causing nutrient imbalances at this stage of avocado tree phenology that are limiting productivity, a possibility that warrants further investigation. Because CSI samples can be collected 4–6 weeks before full bloom, nutritional problems can be addressed before they affect flower retention and fruit set to increase current crop yield, fruit size, and quality. Thus, CSI nutrient analysis warrants further research as a potential supplemental or alternative tool for diagnosing ‘Hass’ avocado tree nutrient status and increasing yield.


1975 ◽  
Vol 15 (74) ◽  
pp. 424
Author(s):  
N Veinbrants

In a series of experiments in Victoria a single spray of the fungicide thiram applied shortly after full bloom reduced fruit density highly significantly on Jonathan and Delicious apples, but resulted in insufficient thinning. The fungicide Dithane M-45 caused mild thinning and the fungicide Dikar had no effect on fruit set when applied during post-bloom period on Jonathan apples. Applications of the insecticide carbamult applied 16, 23 and 32 days after full bloom reduced fruit density highly significantly and to about the extent as N.A.A. applied 16 days after full bloom on Jonathan apples. Carbamult caused the same degree of thinning irrespective of time of application. N.A.A. and carbamult resulted in adequate fruit thinning.


Sign in / Sign up

Export Citation Format

Share Document