scholarly journals Comparison of pressure- and volume-controlled ventilation during laparoscopic colectomy in patients with colorectal cancer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangbong Choi ◽  
So Young Yang ◽  
Geun Joo Choi ◽  
Beom Gyu Kim ◽  
Hyun Kang

AbstractThis study investigated the differences in airway mechanics and postoperative respiratory complications using two mechanical ventilation modalities and the relationship between biomarkers and postoperative respiratory complications in patients with colorectal cancer who underwent laparoscopic colectomy. Forty-six patients with colorectal cancer scheduled for laparoscopic colectomy were randomly allocated to receive mechanical ventilation using either volume-controlled ventilation (VCV) (n = 23) or pressure-controlled ventilation (PCV) (n = 23). Respiratory parameters were measured and plasma sRAGE and S100A12 were collected 20 minutes after the induction of anesthesia in the supine position without pneumoperitoneum (T1), 40 minutes after 30° Trendelenburg position with pneumoperitoneum (T2), at skin closure in the supine position (T3), and 24 hours after the operation (T4). The peak airway pressure (Ppeak) at T2 was lower in the PCV group than in the VCV group. The plateau airway pressures (Pplat) at T2 and T3 were higher in the VCV group than in the PCV group. Plasma levels of sRAGE at T2 and T3 were 1.6- and 1.4-fold higher in the VCV group than in the PCV group, while plasma S100A12 levels were 2.6- and 2.2-fold higher in the VCV group than in the PCV group, respectively. There were significant correlations between Ppeak and sRAGE, and between Ppeak and S100A12. There were also correlations between Pplat and sRAGE, and between Pplat and S100A12. sRAGE and S100A12 levels at T2 and T3 showed high sensitivity and specificity for postoperative respiratory complications. Postoperative respiratory complications were 3-fold higher in the VCV group than in the PCV group. In conclusion, during laparoscopic colectomy in patients with colorectal cancer, the peak airway pressure, the incidence of postoperative respiratory complications, and plasma sRAGE and S100A12 levels were lower in the PCV group than in the VCV group. Intra- and postoperative plasma sRAGE and S100A12 were useful for predicting the development of postoperative respiratory complications.

QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
M A Elshafie ◽  
D M A Elfawy ◽  
A A Abdelhak ◽  
Y N Abdelalim

Abstract Background Although numerous studies conducted in the past years, there is no superior guideline that indicates the best ventilation mode during laparoscopic anesthesia inobese patients. There are numerous studies with dissimilar controversial points. The management of oxygenation in a morbid obese patient undergoing laparoscopic procedures presents many challenging aspects to the anesthetist. Objective The aim of this study was to equate the effect of pressure controlled ventilation (PCV) vs. volume controlled ventilation (VCV) on respiratory, oxygenation parameters and post operative complications. Patients and Methods This study was conducted on 80 patients who underwent laparoscopic gastric sleeve surgery in Ain Shams University Hospitals. Post induction of Anesthesia, Patients were divided into two groups. The first group mechanical ventilation setting was volume controlled ventilation and the second group mechanical ventilation setting was pressure controlled ventilation. Results The results of our study shows that despite some valuable effects regarding plateau and mean airway pressure with PCV, there is no momentous clinical difference between volume controlled ventilation (VCV) and pressure controlled ventilation (PCV) in obese patients undergoing laparoscopic gastric sleeve surgery. However, pressure controlled ventilation shows slightly more favorable results regarding post extubation oxygen saturation and the decrease of post operative basal atelectasis. It appears that using dual modes would be an epitome approach with lower complications and similar outcomes.


2021 ◽  
Vol 49 ◽  
Author(s):  
Cléber Kazuo Ido ◽  
Newton Nunes

Background: Videolaparoscopic procedures have gained prominence due to their low invasiveness, causing less surgical trauma and better post-surgical recovery. However, the increase in intra-abdominal pressure due to the institution of pneumoperitoneum can alter the patient's homeostasis. Therefore, volume-controlled ventilation, associated with positive end-expiratory pressure (PEEP), improves arterial oxygenation and prevents pulmonary collapse, but it can lead to important hemodynamic changes. The aim of this study was to evaluate, comparatively, the effects of positive end expiratory-pressure (PEEP) on hemodynamic variables of pigs submitted to volume-controlled ventilation, during pneumoperitoneum and maintained in head-down tilt and determine which PEEP value promotes greater stability on hemodynamic variables. Materials, Methods & Results: Twenty-four pigs were used, between 55 and 65-day-old, weighing between 15 and 25 kg, randomly divided into 3 distinct groups differentiated by positive end-expiratory pressure: PEEP 0 (volume-controlled ventilation and PEEP of 0 cmH2O), PEEP 5 (volume-controlled ventilation and PEEP of 5 cmH2O) and PEEP 10 (volume-controlled ventilation and PEEP of 10 cmH2O). Volume-controlled ventilation was adjusted to 8 mL/kg of tidal volume and a respiratory rate of 25 movements per min. Anesthesia was maintained with continuous infusion of propofol (0.2 mg/kg/min) and midazolam (1 mg/kg/h). Pneumoperitoneum was performed with carbon dioxide (CO2), keeping the intra-abdominal pressure at 15 mmHg and the animals were positioned on a 30° head-down tilt. The evaluations of hemodynamic variables started 30 min after induction of anesthesia (M0), followed by measurements at 15-min intervals (from M15 to M90), completing a total of 7 evaluations. The variables of interest were collected over 90 min and submitted to analysis of variance followed by Tukey´s post-hoc test, with P < 0.05. The PEEP 10 group had higher values of CVP and mCPP, while the PEEP 5 group, mPAP and PVR were higher. The PEEP 0 group, on the other hand, had higher means of CI. Regarding the moments, there were differences in HR, SAP, DAP, MAP, CO, IC and TPR.Discussion: According to the literature, important hemodynamic effects due to pneumoperitoneum are reported, which can be caused by the pressure used in abdominal insufflation, CO2 accumulation, duration of the surgical procedure, hydration status and patient positioning. Mechanical ventilation associated with PEEP can also cause an increase in intrathoracic pressure and, therefore, reduce cardiac output. Cardiovascular changes are proportional to the PEEP used. Central venous pressure (PVC) measure the patient's preload, and intrathoracic pressure can interfere with this parameter. The peak pressure values in the PEEP 10 group were higher than the other groups, demonstrating that the increase in intrathoracic pressure results in higher PVC values. Regarding PAPm and PCPm, these variables can be influenced according to the PEEP values and the patient's position. In relation to CI, the increase in PEEP may reflect on intrathoracic pressure, resulting in greater compression of the heart, with a consequent reduction in cardiac output and cardiac index. Therefore, it is concluded that the PEEP effects of 0 cmH2O and 5 cmH2O on hemodynamics are discrete, under the proposed conditions. Keywords: mechanical ventilation, PEEP, head-down tilt, VCV, swine. Descritores: ventilação mecânica, PEEP, posição de Trendelenburg, suínos. 


2021 ◽  
Vol 2 (4) ◽  
pp. 147-148
Author(s):  
Mia Shokry ◽  
Kimiyo Yamasaki

A: Patient with little effort. Top: Volume Controlled Ventilation: airway pressure in cmH2O in yellow, constant flow in L/min in pink. Middle: Pressure controlled ventilation: airway pressure in cmH2O in yellow, decelerating flow in L/min in pink. Bottom: Esophageal pressure in cmH2O. B: Patient with high effort. Top: Volume Controlled Ventilation: airway pressure with convex negative deflection during trigger and first half of inspiration (blue arrow). Middle: Pressure controlled ventilation: airway pressure with negative deflection during the trigger (yellow arrow) and slight convex deflection (green arrow), concave deflection in the flow (orange arrow). Bottom: Convex deflection in esophageal pressure (grey arrow).


Author(s):  
Kristy A. Bauman ◽  
Robert C. Hyzy

The goal of mechanical ventilation is to achieve adequate gas exchange while minimizing haemodynamic compromise and ventilator-associated lung injury. Volume-controlled ventilation can be delivered via several modes, including controlled mechanical ventilation, assist control (AC) and synchronized intermittent mandatory ventilation (SIMV). .In volume-controlled modes, the clinician sets the flow pattern, flow rate, trigger sensitivity, tidal volume, respiratory rate, positive end-expiratory pressure, and fraction of inspired oxygen. Patient ventilator synchrony can be enhanced by setting appropriate trigger sensitivity and inspiratory flow rate. I:E ratio can be adjusted to improve oxygenation, avoid air trapping and enhance patient comfort. There is little data regarding the benefits of one volume-controlled mode over another. In acute respiratory distress syndrome, low tidal volume ventilation in conjunction with plateau pressure limitation should be employed as there is a reduction in mortality with this strategy. This chapter addresses respiratory mechanics, modes and settings, clinical applications, and limitations of volume-controlled ventilation.


Author(s):  
Lorenzo Giosa ◽  
Mattia Busana ◽  
Iacopo Pasticci ◽  
Matteo Bonifazi ◽  
Matteo Maria Macrì ◽  
...  

Abstract Background Mechanical power is a summary variable including all the components which can possibly cause VILI (pressures, volume, flow, respiratory rate). Since the complexity of its mathematical computation is one of the major factors that delay its clinical use, we propose here a simple and easy to remember equation to estimate mechanical power under volume-controlled ventilation: $$ \mathrm{Mechanical}\ \mathrm{Power}=\frac{\mathrm{VE}\times \left(\mathrm{Peak}\ \mathrm{Pressure}+\mathrm{PEEP}+F/6\right)}{20} $$Mechanical Power=VE×Peak Pressure+PEEP+F/620 where the mechanical power is expressed in Joules/minute, the minute ventilation (VE) in liters/minute, the inspiratory flow (F) in liters/minute, and peak pressure and positive end-expiratory pressure (PEEP) in centimeter of water. All the components of this equation are continuously displayed by any ventilator under volume-controlled ventilation without the need for clinician intervention. To test the accuracy of this new equation, we compared it with the reference formula of mechanical power that we proposed for volume-controlled ventilation in the past. The comparisons were made in a cohort of mechanically ventilated pigs (485 observations) and in a cohort of ICU patients (265 observations). Results Both in pigs and in ICU patients, the correlation between our equation and the reference one was close to the identity. Indeed, the R2 ranged from 0.97 to 0.99 and the Bland-Altman showed small biases (ranging from + 0.35 to − 0.53 J/min) and proportional errors (ranging from + 0.02 to − 0.05). Conclusions Our new equation of mechanical power for volume-controlled ventilation represents a simple and accurate alternative to the more complex ones available to date. This equation does not need any clinical intervention on the ventilator (such as an inspiratory hold) and could be easily implemented in the software of any ventilator in volume-controlled mode. This would allow the clinician to have an estimation of mechanical power at a simple glance and thus increase the clinical consciousness of this variable which is still far from being used at the bedside. Our equation carries the same limitations of all other formulas of mechanical power, the most important of which, as far as it concerns VILI prevention, are the lack of normalization and its application to the whole respiratory system (including the chest wall) and not only to the lung parenchyma.


2021 ◽  
Vol 10 (6) ◽  
pp. 1276
Author(s):  
Volker Schick ◽  
Fabian Dusse ◽  
Ronny Eckardt ◽  
Steffen Kerkhoff ◽  
Simone Commotio ◽  
...  

For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes of ventilation could be beneficial in terms of improved airway pressures (Ppeak, Pplateau, Pmean), dynamic compliance (Cdyn), or arterial blood gases (PaO2, PaCO2) in adults undergoing elective surgery under general anesthesia. Three major medical electronic databases were searched with predefined search strategies and publications were systematically evaluated according to the Cochrane Review Methods. Continuous variables were tested for mean differences using the inverse variance method and 95% confidence intervals (CI) were calculated. Based on the assumption that intervention effects across studies were not identical, a random effects model was chosen. Assessment for heterogeneity was performed with the χ2 test and the I2 statistic. As primary endpoints, Ppeak, Pplateau, Pmean, Cdyn, PaO2, and PaCO2 were evaluated. Of the 725 publications identified, 17 finally met eligibility criteria, with a total of 929 patients recruited. Under supine two-lung ventilation, PCV-VG resulted in significantly reduced Ppeak (15 studies) and Pplateau (9 studies) as well as higher Cdyn (9 studies), compared with VCV [random effects models; Ppeak: CI −3.26 to −1.47; p < 0.001; I2 = 82%; Pplateau: −3.12 to −0.12; p = 0.03; I2 = 90%; Cdyn: CI 3.42 to 8.65; p < 0.001; I2 = 90%]. For one-lung ventilation (8 studies), PCV-VG allowed for significantly lower Ppeak and higher PaO2 compared with VCV. In Trendelenburg position (5 studies), this effect was significant for Ppeak only. This systematic review and meta-analysis demonstrates that volume-targeting, pressure-controlled ventilation modes may provide benefits with respect to the improved airway dynamics in two- and one-lung ventilation, and improved oxygenation in one-lung ventilation in adults undergoing elective surgery.


Sign in / Sign up

Export Citation Format

Share Document