scholarly journals Clinical safety of ProMRI implantable cardioverter-defibrillator systems during head and lower lumbar magnetic resonance imaging at 1.5 Tesla

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wolfgang Rudolf Bauer ◽  
Dennis H. Lau ◽  
Christian Wollmann ◽  
Andrew McGavigan ◽  
Jacques Mansourati ◽  
...  

AbstractMagnetic resonance imaging (MRI) has long been contraindicated in patients with implanted pacemakers, defibrillators, and cardiac resynchronisation therapy (CRT) devices due to the risk of adverse effects through electromagnetic interference. Since many recipients of these devices will have a lifetime indication for an MRI scan, the implantable systems should be developed as ‘MRI-conditional’ (be safe for the MRI environment under predefined conditions). We evaluated the clinical safety of several Biotronik ProMRI (‘MRI-conditional’) defibrillator and CRT systems during head and lower lumbar MRI scans at 1.5 Tesla. The study enrolled 194 patients at 22 sites in Australia, Canada, and Europe. At ≥9 weeks after device implantation, predefined, non-diagnostic, specific absorption rate (SAR)-intensive head and lower lumbar MRI scans (total ≈30 minutes per patient) were performed in 146 patients that fulfilled pre-procedure criteria. Three primary endpoints were evaluated: freedom from serious adverse device effects (SADEs) related to MRI and defibrillator/CRT (leading to death, hospitalisation, life-threatening condition, or potentially requiring implanted system revision or replacement), pacing threshold increase, and sensing amplitude decrease, all at the 1-month post-MRI clinical visit. No MRI-related SADE occurred. Lead values remained stable, measured in clinic and monitored daily by the manufacturer home monitoring technology.

EP Europace ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1678-1685
Author(s):  
Rainer Zbinden ◽  
Christian Wollmann ◽  
Johannes Brachmann ◽  
Jochen Michaelsen ◽  
Clemens Steinwender ◽  
...  

Abstract Aims There have been no published studies on the safety of magnetic resonance imaging (MRI) at 3 Tesla (3 T) in patients with MRI-conditional implantable cardioverter-defibrillators (ICDs). The aim of this study was to assess clinical safety of the Biotronik ProMRI ICD system during non-diagnostic head and lower lumbar scans under 3 T MRI conditions. Methods and results The study enrolled 129 patients at 12 sites in Australia, Singapore, and Europe. Predefined head and lower lumbar MR scans (total duration ≈30 min) were performed in 112 patients. Three primary endpoints were evaluated from the pre-MRI to the 1-month post-MRI visit: (i) freedom from serious adverse device effects (SADEs) related to MRI (hypothesized to be >90%); (ii) pacing threshold invariance for all leads (geometric mean of the patient-wise ratios for 1 month vs. pre-MRI was hypothesized to be <1.07); and (iii) sensing amplitude invariance (geometric mean of the ratios was hypothesized to be >0.993). No MRI-related SADE occurred (SADE-free rate 100%, 95% confidence interval 95.98–100%). Pacing threshold and sensing amplitudes fulfilled the invariance hypotheses with high statistical significance (P < 0.0013). No threshold increase >0.5 V or sensing amplitude decrease by >50% was observed (secondary endpoints). Lead impedances, battery capacity, and detection and treatment of arrhythmias by ICDs were not affected by MRI scans. Conclusion The head and lower lumbar scans under specific 3 T MRI conditions were safe in the investigated MR-conditional ICD systems. There was no evidence of harm to the patients or any negative influence of the MRI scan on the implanted systems.


Heart Rhythm ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 1183-1191 ◽  
Author(s):  
William M. Bailey ◽  
Lawrence Rosenthal ◽  
Lameh Fananapazir ◽  
Marye Gleva ◽  
Alexander Mazur ◽  
...  

Pain Practice ◽  
2021 ◽  
Author(s):  
Marco Reining ◽  
Dirk Winkler ◽  
Joachim Boettcher ◽  
Juergen Meixensberger ◽  
Michael Kretzschmar

2021 ◽  
Vol 9 (4) ◽  
pp. 232596712199546
Author(s):  
Takuji Yokoe ◽  
Takuya Tajima ◽  
Hiroshi Sugimura ◽  
Shinichirou Kubo ◽  
Shotarou Nozaki ◽  
...  

Background: Spondylolysis and undiagnosed mechanical low back pain (UMLBP) are the main causes of low back pain (LBP) in adolescent athletes. No studies have evaluated the difference in clinical and radiographic factors between these 2 conditions. Furthermore, it remains unclear which adolescent athletes with LBP should undergo advanced imaging examination for spondylolysis. Purpose: To compare the clinical and radiographic factors of adolescent athletes with spondylolysis and UMLBP who did not have neurological symptoms or findings before magnetic resonance imaging (MRI) evaluation and to determine the predictors of spondylolysis findings on MRI. Study Design: Cohort study, Level of evidence, 3. Methods: The study population included 122 adolescent athletes aged 11 to 18 years who had LBP without neurological symptoms or findings and who underwent MRI. Of these participants, 75 were ultimately diagnosed with spondylolysis, and 47 were diagnosed with UMLBP. Clinical factors and the following radiographic parameters were compared between the 2 groups: spina bifida occulta, lumbar lordosis (LL) angle, and the ratio of the interfacet distance of L1 to that of L5 (L1:L5 ratio, %). A logistic regression analysis was performed to evaluate independent predictors of spondylolysis on MRI scans. Results: Significantly more athletes with spondylolysis were male (82.7% vs 48.9%; P < .001), had a greater LL angle (22.8° ± 8.1° vs 19.3° ± 8.5°; P = .02), and had a higher L1:L5 ratio (67.4% ± 6.3% vs 63.4% ± 6.6%; P = .001) versus athletes with UMLBP. A multivariate analysis revealed that male sex (odds ratio [OR], 4.66; P < .001) and an L1:L5 ratio of >65% (OR, 3.48; P = .003) were independent predictors of positive findings of spondylolysis on MRI scans. Conclusion: The study findings indicated that sex and the L1:L5 ratio are important indicators for whether to perform MRI as an advanced imaging examination for adolescent athletes with LBP who have no neurological symptoms and findings.


2013 ◽  
Vol 3;16 (3;5) ◽  
pp. E295-E300
Author(s):  
Thomas T. Simopoulos

Background: The use of magnetic resonance imaging (MRI) is continuously escalating for the evaluation of patients with persistent pain following lumbar spine surgery (LSS). Spinal cord stimulation (SCS) therapy is being clinically applied much more commonly for the management of chronic pain following LSS. There is an increased probability that these 2 incompatible modalities may be accidentally used in the same patient. Objectives: The purpose of this case report is to: (1) summarize a case in which a patient with a thoracic spinal cord stimulator underwent a diagnostic lumbar MRI, (2) describe the 3 magnetic fields used to generate images and their interactions with SCS devices, and (3) summarize the present literature. Study design: Case report. Setting: University hospital. Results: Aside from mild heat sensations in the generator/pocket site and very low intensity shocking sensations in the back while in the MRI scanner, the patient emerged from the study with no clinically detected adverse events. Subsequent activation of the SCS device would result in a brief intense shocking sensation. This persisted whenever the device was activated and required Implantable Pulse Generator (IPG) replacement. Electrical analysis revealed that some of the output circuitry switches, which regulate IPG stimulation and capacitor charge balancing, were damaged, most likely by MRI radiofrequency injected current. Limitations: Single case of a patient with a thoracic SCS having a lumbar MRI study. Conclusion: This case demonstrates the lack of compatibility of lumbar MRI and the Precision SCS system as well as one of the possible patient adverse events that can occur when patients are exposed to MRI outside of the approved device labeling. Key words: Spinal cord stimulation devices, magnetic resonance imaging


2018 ◽  
Vol 31 (4) ◽  
pp. 362-371 ◽  
Author(s):  
Ravi Datar ◽  
Asuri Narayan Prasad ◽  
Keng Yeow Tay ◽  
Charles Anthony Rupar ◽  
Pavlo Ohorodnyk ◽  
...  

Background White matter abnormalities (WMAs) pose a diagnostic challenge when trying to establish etiologic diagnoses. During childhood and adult years, genetic disorders, metabolic disorders and acquired conditions are included in differential diagnoses. To assist clinicians and radiologists, a structured algorithm using cranial magnetic resonance imaging (MRI) has been recommended to aid in establishing working diagnoses that facilitate appropriate biochemical and genetic investigations. This retrospective pilot study investigated the validity and diagnostic utility of this algorithm when applied to white matter signal abnormalities (WMSAs) reported on imaging studies of patients seen in our clinics. Methods The MRI algorithm was applied to 31 patients selected from patients attending the neurometabolic/neurogenetic/metabolic/neurology clinics at a tertiary care hospital. These patients varied in age from 5 months to 79 years old, and were reported to have WMSAs on cranial MRI scans. Twenty-one patients had confirmed WMA diagnoses and 10 patients had non-specific WMA diagnoses (etiology unknown). Two radiologists, blinded to confirmed diagnoses, used clinical abstracts and the WMSAs present on patient MRI scans to classify possible WMA diagnoses utilizing the algorithm. Results The MRI algorithm displayed a sensitivity of 100%, a specificity of 30.0% and a positive predicted value of 74.1%. Cohen’s kappa statistic for inter-radiologist agreement was 0.733, suggesting “good” agreement between radiologists. Conclusions Although a high diagnostic utility was not observed, results suggest that this MRI algorithm has promise as a clinical tool for clinicians and radiologists. We discuss the benefits and limitations of this approach.


Author(s):  
Cheng-Yi Wang ◽  
Wei-Chou Chang ◽  
Hsin-Hung Huang ◽  
Wei-Kuo Chang ◽  
Yu-Lueng Shih ◽  
...  

Objective: Not all endoscopic clips are compatible with magnetic resonance imaging (MRI). The aim of this study is to investigate the safety of MRI-incompatible endoscopic clips in patients undergoing MRI scans. Methods: We retrospectively reviewed the medical records of patients who had received endoscopic clip placement of Olympus Long Clip MRI-incompatible clips and then had undergone MRI scans within two weeks in our hospital between 2014 and 2019. Results: A total of 44,292 patients had undergone an MRI examination at our hospital. Only 15 patients had MRI scans within two weeks after the endoscopic clip placement. Their median age was 65.5 years, and 12 of the 15 patients were men. At the time of the clip placement and MRI scan, four patients were taking anti-coagulation or anti-platelet agents. The indication for endoscopic clip placement of the 15 patients was mucosal/submucosal defect or hemorrhage and colonic perforation. Endoscopic clips were placed in the colon of 14 patients and in the stomach of only one patient for gastric hemorrhage. One patient experienced clip migration and three displayed artifacts in abdominal images. No patient complications of mortality, hemorrhage, or organ perforation occurred. Conclusion: No serious adverse event occurred during MRI scans of patients with MRI-incompatible clips in this study, suggesting that MRI-incompatible clips may be safe to use in MRI scans. However, this does not guarantee the safety of the Long Clip for MRI scans, as further tests are needed to verify that this clip is safe for use during MRI.


Sign in / Sign up

Export Citation Format

Share Document