scholarly journals Quantitative trait loci influencing pentacyclic triterpene composition in apple fruit peel

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
John T. Christeller ◽  
Tony K. McGhie ◽  
Jason W. Johnston ◽  
Bridie Carr ◽  
David Chagné

AbstractThe chemical composition of pentacyclic triterpenes was analysed using a ‘Royal Gala’ x ‘Granny Smith’ segregating population in 2013 and 2015, using apple peels extracted from mature fruit at harvest and after 12 weeks of cold storage. In 2013, 20 compound isoforms from nine unique compound classes were measured for both treatments. In 2015, 20 and 17 compound isoforms from eight unique compound classes were measured at harvest and after cold storage, respectively. In total, 68 quantitative trait loci (QTLs) were detected on 13 linkage groups (LG). Thirty two and 36 QTLs were detected for compounds measured at harvest and after cold storage, respectively. The apple chromosomes with the most QTLs were LG3, LG5, LG9 and LG17. The largest effect QTL was for trihydroxy-urs-12-ene-28-oic acid, located on LG5; this was measured in 2015 after storage, and was inherited from the ‘Royal Gala’ parent (24.9% of the phenotypic variation explained).

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2519
Author(s):  
Shuhao Yu ◽  
Silvano Assanga ◽  
Joseph Awika ◽  
Amir Ibrahim ◽  
Jackie Rudd ◽  
...  

To meet the demands of different wheat-based food products, traits related to end-use quality become indispensable components in wheat improvement. Thus, markers associated with these traits are valuable for the timely evaluation of protein content, kernel physical characteristics, and rheological properties. Hereunder, we report the mapping results of quantitative trait loci (QTLs) linked to end-use quality traits. We used a dense genetic map with 5199 SNPs from a 90K array based on a recombinant inbred line (RIL) population derived from ‘CO960293-2′/’TAM 111′. The population was evaluated for flour protein concentration, kernel characteristics, dough rheological properties, and grain mineral concentrations. An inclusive composite interval mapping model for individual and across-environment QTL analyses revealed 22 consistent QTLs identified in two or more environments. Chromosomes 1A, 1B, and 1D had clustered QTLs associated with rheological parameters. Glu-D1 loci from CO960293-2 and either low-molecular-weight glutenin subunits or gliadin loci on 1A, 1B, and 1D influenced dough mixing properties substantially, with up to 34.2% of the total phenotypic variation explained (PVE). A total of five QTLs associated with grain Cd, Co, and Mo concentrations were identified on 3B, 5A, and 7B, explaining up to 11.6% of PVE. The results provide important genetic resources towards understanding the genetic bases of end-use quality traits. Information about the novel and consistent QTLs provided solid foundations for further characterization and marker designing to assist selections for end-use quality improvements.


2020 ◽  
Vol 13 (3) ◽  
Author(s):  
Wenyan Zheng ◽  
Fei Shen ◽  
Wuqian Wang ◽  
Bei Wu ◽  
Xuan Wang ◽  
...  

Genome ◽  
2010 ◽  
Vol 53 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Katsunori Hatakeyama ◽  
Atsushi Horisaki ◽  
Satoshi Niikura ◽  
Yoshihiro Narusaka ◽  
Hiroshi Abe ◽  
...  

The level of self-incompatibility (SI) is important to the purity of F1 seeds produced using the SI system of Brassica vegetables. To analyze the genetic basis of the level of SI, we generated an F2 population derived from a cross between a turnip inbred line showing a high level of SI and a Chinese cabbage inbred line showing a low level, and evaluated the level of SI under insect pollination in two years. We constructed a detailed linkage map of Brassica rapa from the F2 progeny, consisting of SSR, SNP, indel, and CAPS loci segregating into 10 linkage groups covering approximately 700 cM. Five quantitative trait loci (QTL) for high-level SI were identified. The phenotypic variation explained by the QTL ranged between 7.2% and 23.8%. Two QTL were detected in both years. Mapping of SI-related genes revealed that these QTL were co-localized with SLG on R07 and MLPK on R03. This is the first report of QTL for high-level SI evaluated under insect pollination in a Brassica vegetable. Our results could be useful for the marker-assisted selection of parental lines with a stable SI.


Genome ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ting Li ◽  
Jian Ma ◽  
Yaya Zou ◽  
Guangdeng Chen ◽  
Puyang Ding ◽  
...  

A completely developed and vigorous root system can provide a stable platform for aboveground plant organs. To identify loci controlling root traits that could be used in wheat (Triticum aestivum L.) breeding, 199 recombinant inbred lines were used to measure and analyze eight root traits. A total of 18 quantitative trait loci (QTL) located on chromosomes 1A, 2A, 2B, 2D, 4B, 4D, 6A, 7A, and 7B were identified. The phenotypic variation explained by these 18 QTL ranged from 3.27% to 11.75%, and the logarithm of odds scores ranged from 2.50 to 6.58. A comparison of physical intervals indicated several new QTL for root traits were identified. In addition, significant correlations between root and agronomic traits were detected and discussed. The results presented in this study, along with those of previous reports, suggest that chromosomes 2 and 7 likely play important roles in the growth and development of wheat roots.


2019 ◽  
Vol 295 (1) ◽  
pp. 209-219 ◽  
Author(s):  
Dorota Sołtys-Kalina ◽  
Katarzyna Szajko ◽  
Iwona Wasilewicz-Flis ◽  
Dariusz Mańkowski ◽  
Waldemar Marczewski ◽  
...  

Abstract The objective of this study was to map the quantitative trait loci (QTLs) for chip color after harvest (AH), cold storage (CS) and after reconditioning (RC) in diploid potato and compare them with QTLs for starch-corrected chip color. Chip color traits AH, CS, and RC significantly correlated with tuber starch content (TSC). To limit the effect of starch content, the chip color was corrected for TSC. The QTLs for chip color (AH, CS, and RC) and the starch-corrected chip color determined with the starch content after harvest (SCAH), after cold storage (SCCS) and after reconditioning (SCRC) were compared to assess the extent of the effect of starch and the location of genetic factors underlying this effect on chip color. We detected QTLs for the AH, CS, RC and starch-corrected traits on ten potato chromosomes, confirming the polygenic nature of the traits. The QTLs with the strongest effects were detected on chromosomes I (AH, 0 cM, 11.5% of variance explained), IV (CS, 43.9 cM, 12.7%) and I (RC, 49.7 cM, 14.1%). When starch correction was applied, the QTLs with the strongest effects were revealed on chromosomes VIII (SCAH, 39.3 cM, 10.8% of variance explained), XI (SCCS, 79.5 cM, 10.9%) and IV (SCRC, 43.9 cM, 10.8%). Applying the starch correction changed the landscape of QTLs for chip color, as some QTLs became statistically insignificant, shifted or were refined, and new QTLs were detected for SCAH. The QTLs on chromosomes I and IV were significant for all traits with and without starch correction.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
R Hall ◽  
R Müllenbach ◽  
S Huss ◽  
R Alberts ◽  
K Schughart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document