scholarly journals Modeling recovery of natural gas from hydrate reservoirs with carbon dioxide sequestration: Validation with Iġnik Sikumi field data

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Avinash V. Palodkar ◽  
Amiya K. Jana

AbstractFundamental understanding of guest gas replacement in hydrate reservoirs is crucial for the enhanced recovery of natural gas and carbon dioxide (CO2) sequestration. To gain physical insight into this exchange process, this work aims at developing and validating a clathrate hydrate model for gas replacement. Most of the practical concerns associated with naturally occurring gas hydrates, including hydrate formation and dissociation in interstitial pore space between distributed sand particles in the presence of salt ions and in irregular nanometer-sized pores of those particles, irregularity in size of particles and shape of their pores, interphase dynamics during hydrate formation and decay, and effect of surface tension, are addressed. An online parameter identification technique is devised for automatic tuning of model parameters in the field. This model is employed to predict the laboratory-scale data for methane hydrate formation and decomposition. Subsequently, the model is validated with the field data of the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. In this Iġnik Sikumi field experiment, mixed CO2 (i.e., CO2 + N2) is used as a replacement agent for natural gas recovery. It is observed that the proposed formulation secures a promising performance with a maximum absolute average relative deviation (AARD) of about 2.83% for CH4, which is even lower, 0.84% for CO2 and 1.67% for N2.

2021 ◽  
Author(s):  
Alan Junji Yamaguchi ◽  
Kaito Kobayashi ◽  
Toru Sato ◽  
Takaomi Tobase

Abstract The global warming is an important environmental concern and the carbon capture and storage (CCS) emerges as a very promising technology. Captured carbon dioxide (CO2) can be stored onshore or offshore in the aquifers. There is, however, a risk that stored CO2 will leak due to natural disasters. One possible solution to this is the natural formation of CO2 hydrates. Gas hydrate has an ice-like structure in which small gas molecules are trapped within cages of water molecules. Hydrate formation occurs under high pressure and low temperature conditions. Its stability under these conditions acts like a cap rock to prevent CO2 leaks. The main objective of this study is to understand how hydrate formation affects the permeability of leaked CO2 flows. The phase field method was used to simulate microscopic hydrate growth within the pore space of sand grains, while the lattice Boltzmann method was used to simulate two-phase flow. The results showed that the hydrate morphology within the pore space changes with the flow, and the permeability is significantly reduced as compared with the case without the flow.


2010 ◽  
Author(s):  
Ruiyan Sun ◽  
Changjun Li ◽  
Sheng Yu ◽  
Shigang Wang ◽  
Ouyang Sun ◽  
...  

2019 ◽  
Vol 27 (9) ◽  
pp. 2062-2073 ◽  
Author(s):  
Fengguang Li ◽  
Qing Yuan ◽  
Tianduo Li ◽  
Zhi Li ◽  
Changyu Sun ◽  
...  

2020 ◽  
Vol 13 (18) ◽  
Author(s):  
Alberto Maria Gambelli ◽  
Federico Rossi

Abstract Natural gas hydrates represent a valid opportunity in terms of energy supplying, carbon dioxide permanent storage and climate change contrast. Research is more and more involved in performing CO2 replacement competitive strategies. In this context, the inhibitor effect of sodium chloride on hydrate formation and stability needs to be investigated in depth. The present work analyses how NaCl intervenes on CO2 hydrate formation, comparing results with the same typology of tests carried out with methane, in order to highlight the influence that salt produced on hydrate equilibrium conditions and possibilities which arise from here for improving the replacement process efficiency. Sodium chloride influence was then tested on five CO2/CH4 replacement tests, carried out via depressurization. In relation with the same typology of tests, realised in pure demineralised water and available elsewhere in literature, three main differences were found. Before the replacement phase, CH4 hydrate formation was particularly contained; moles of methane involved were in the range 0.059–0.103 mol. On the contrary, carbon dioxide moles entrapped into water cages were 0.085–0.206 mol or a significantly higher quantity. That may be justified by the greater presence of space and free water due to the lower CH4 hydrate formation, which led to a more massive new hydrate structure formation. Moreover, only a small part of methane moles remained entrapped into hydrates after the replacement phase (in the range of 0.023–0.042 mol), proving that, in presence of sodium chloride, CO2/CH4 exchange interested the greater part of hydrates. Thus, the possibility to conclude that sodium chloride presence during the CO2 replacement process provided positive and encouraging results in terms of methane recovery, carbon dioxide permanent storage and, consequently, replacement process efficiency.


1998 ◽  
Vol 12 (1) ◽  
pp. 183-188 ◽  
Author(s):  
Peter G. Brewer ◽  
Franklin M. Orr, ◽  
Gernot Friederich ◽  
Keith A. Kvenvolden ◽  
Daniel L. Orange

Sign in / Sign up

Export Citation Format

Share Document