scholarly journals Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meisam Asgari ◽  
Véronique Brulé ◽  
Tamara L. Western ◽  
Damiano Pasini
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua W. McCausland ◽  
Xinxing Yang ◽  
Georgia R. Squyres ◽  
Zhixin Lyu ◽  
Kevin E. Bruce ◽  
...  

AbstractThe FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ’s treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.


1999 ◽  
Vol 155 (6) ◽  
pp. 719-726 ◽  
Author(s):  
M. Vicré ◽  
H.W. Sherwin ◽  
A. Driouich ◽  
M.A. Jaffer ◽  
J.M. Farrant

Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Zhennan Zhang ◽  
Bo Wang ◽  
Dongmei Sun ◽  
Xin Deng

AbstractSmall heat shock proteins (sHSPs) are a class of molecular chaperones that bind to and prevent aggregation of proteins. To assess the potential role of sHSPs in protection against abiotic stresses, we conducted a screening of sHSP genes from the desiccation-tolerant resurrection plant Boea hygrometrica, which is widespread in East Asia in alkaline, calcium-rich limestone crevices. In total, 25 sHSP genes, belonging to six subgroups, were identified from the desiccated leaves of B. hygrometrica. Ten of these genes were cloned and named according to the nomenclature proposed for sHSPs. Transcripts of all these BhsHSPs were detectable in fresh leaves, but only 6 genes were induced after desiccation, and remained high during rehydration. Four of the cytosol-targeted BhsHSP genes were up-regulated under treatments, such as heat, cold, alkaline conditions, high calcium, oxidation, or application of the phytohormone abscisic acid. Together, these results demonstrate that CI and CII sHSPs, especially Bh17.9CI and Bh17.4BCII, are associated with abiotic stresses, and may function in the maintenance of protein stability, aiding in the adaptations to extreme environmental conditions in which B. hygrometrica can survive.


2020 ◽  
Vol 6 (48) ◽  
pp. eabc9294
Author(s):  
Qingqing Wu ◽  
Yue Li ◽  
Mohan Lyu ◽  
Yiwen Luo ◽  
Hui Shi ◽  
...  

How mechanical forces regulate plant growth is a fascinating and long-standing question. After germination underground, buried seedlings have to dynamically adjust their growth to respond to mechanical stimulation from soil barriers. Here, we designed a lid touch assay and used atomic force microscopy to investigate the mechanical responses of seedlings during soil emergence. Touching seedlings induced increases in cell wall stiffness and decreases in cell elongation, which were correlated with pectin degradation. We revealed that PGX3, which encodes a polygalacturonase, mediates touch-imposed alterations in the pectin matrix and the mechanics of morphogenesis. Furthermore, we found that ethylene signaling is activated by touch, and the transcription factor EIN3 directly associates with PGX3 promoter and is required for touch-repressed PGX3 expression. By uncovering the link between mechanical forces and cell wall remodeling established via the EIN3-PGX3 module, this work represents a key step in understanding the molecular framework of touch-induced morphological changes.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ahmad Rafsanjani ◽  
Véronique Brulé ◽  
Tamara L. Western ◽  
Damiano Pasini

2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


Oecologia ◽  
1991 ◽  
Vol 88 (4) ◽  
pp. 597-604 ◽  
Author(s):  
Jefferson G. Lebkuecher ◽  
William G. Eickmeier

2006 ◽  
Vol 18 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Robert Redgwell ◽  
Monica Fischer

This review summarises recent advances in the chemistry, physiology and molecular properties of coffee carbohydrates with a particular focus on the cell wall polysaccharides. The results of detailed chemical studies have demonstrated novel structural features of both the galactomannans and the arabinogalactan polysaccharides of the green and roasted coffee bean. For the first time immunological probes based on monoclonal antibodies for specific polysaccharide epitopes were used to reveal the patterns of distribution of the galactomannans, arabinogalactans and pectic polysaccharides in the coffee bean cell wall. Finally, the results of physiological and molecular studies are presented which emphasise the growing awareness of the potential role the metabolic status of the green bean may play in final coffee beverage quality.


2004 ◽  
Vol 120 (2) ◽  
pp. 229-239 ◽  
Author(s):  
Maite Vicre ◽  
Olivier Lerouxel ◽  
Jill Farrant ◽  
Patrice Lerouge ◽  
Azeddine Driouich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document