Molecular cloning and differential expression of sHSP gene family members from the resurrection plant Boea hygrometrica in response to abiotic stresses

Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Zhennan Zhang ◽  
Bo Wang ◽  
Dongmei Sun ◽  
Xin Deng

AbstractSmall heat shock proteins (sHSPs) are a class of molecular chaperones that bind to and prevent aggregation of proteins. To assess the potential role of sHSPs in protection against abiotic stresses, we conducted a screening of sHSP genes from the desiccation-tolerant resurrection plant Boea hygrometrica, which is widespread in East Asia in alkaline, calcium-rich limestone crevices. In total, 25 sHSP genes, belonging to six subgroups, were identified from the desiccated leaves of B. hygrometrica. Ten of these genes were cloned and named according to the nomenclature proposed for sHSPs. Transcripts of all these BhsHSPs were detectable in fresh leaves, but only 6 genes were induced after desiccation, and remained high during rehydration. Four of the cytosol-targeted BhsHSP genes were up-regulated under treatments, such as heat, cold, alkaline conditions, high calcium, oxidation, or application of the phytohormone abscisic acid. Together, these results demonstrate that CI and CII sHSPs, especially Bh17.9CI and Bh17.4BCII, are associated with abiotic stresses, and may function in the maintenance of protein stability, aiding in the adaptations to extreme environmental conditions in which B. hygrometrica can survive.

2018 ◽  
Vol 19 (9) ◽  
pp. 2603 ◽  
Author(s):  
Claudia Campanella ◽  
Andrea Pace ◽  
Celeste Caruso Bavisotto ◽  
Paola Marzullo ◽  
Antonella Marino Gammazza ◽  
...  

Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.


2015 ◽  
Vol 14 (4) ◽  
pp. 19144-19154 ◽  
Author(s):  
J.T. Chen ◽  
A. Younusi ◽  
L. Cao ◽  
Z. Tian ◽  
Y.J. Zhou ◽  
...  

2013 ◽  
Vol 25 (11) ◽  
pp. 2312-2319 ◽  
Author(s):  
Liuwang Zeng ◽  
Jieqiong Tan ◽  
Wei Lu ◽  
Tonglin Lu ◽  
Zhiping Hu

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


2020 ◽  
Vol 21 (8) ◽  
pp. 751-760 ◽  
Author(s):  
Qiang Shan ◽  
Fengtao Ma ◽  
Jingya Wei ◽  
Hongyang Li ◽  
Hui Ma ◽  
...  

Heat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.


Sign in / Sign up

Export Citation Format

Share Document