scholarly journals Publisher Correction: Runx2 stimulates neoangiogenesis through the Runt domain in melanoma

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniela Cecconi ◽  
Jessica Brandi ◽  
Marcello Manfredi ◽  
Michela Serena ◽  
Luca Dalle Carbonare ◽  
...  
Keyword(s):  
1997 ◽  
Vol 17 (7) ◽  
pp. 4133-4145 ◽  
Author(s):  
Y W Zhang ◽  
S C Bae ◽  
G Huang ◽  
Y X Fu ◽  
J Lu ◽  
...  

The gene AML1/PEBP2 alphaB encodes the alpha subunit of transcription factor PEBP2/CBF and is essential for the establishment of fetal liver hematopoiesis. Rearrangements of AML1 are frequently associated with several types of human leukemia. Three types of AML1 cDNA isoforms have been described to date; they have been designated AML1a, AML1b, and AML1c. All of these isoforms encode the conserved-Runt domain, which harbors the DNA binding and heterodimerization activities. We have identified a new isoform of the AML1 transcript, termed AML1 deltaN, in which exon 1 is directly connected to exon 4 by alternative splicing. The AML1 deltaN transcript was detected in various hematopoietic cell lines of lymphoid to myeloid cell origin, as revealed by RNase protection and reverse transcriptase PCR analyses. The protein product of AML1 deltaN lacks the N-terminal region of AML1, including half of the Runt domain, and neither binds to DNA nor heterodimerizes with the beta subunit. However, AML1 deltaN was found to interfere with the transactivation activity of PEBP2, and the molecular region responsible for this activity was identified. Stable expression of AML1 deltaN in 32Dcl3 myeloid cells blocked granulocytic differentiation in response to granulocyte colony-stimulating factor. These results suggest that AML1 deltaN acts as a modulator of AML1 function and serves as a useful tool to dissect the functional domains in the C-terminal region of AML1.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1862
Author(s):  
Satoru Kanto ◽  
Marcin Grynberg ◽  
Yoshiyuki Kaneko ◽  
Jun Fujita ◽  
Masanobu Satake

Background.Members of theRunxgene family encode transcription factors that bind to DNA in a sequence-specific manner. Among the three Runx proteins, Runx2 comprises 607 amino acid (aa) residues, is expressed in bone, and plays crucial roles in osteoblast differentiation and bone development. We examined whether theRunx2gene is also expressed in testes.Methods.Murine testes from 1-, 2-, 3-, 4-, and 10-week-old male mice of the C57BL/6J strain andW∕Wvstrain were used throughout the study. Northern Blot Analyses were performed using extracts form the murine testes. Sequencing of cDNA clones and 5′-rapid amplification of cDNA ends were performed to determine the full length of the transcripts, which revealed that the testicular Runx2 comprises 106 aa residues coding novel protein. Generating an antiserum using the amino-terminal 15 aa of Runx2 (Met1to Gly15) as an antigen, immunoblot analyses were performed to detect the predicted polypeptide of 106 aa residues with the initiating Met1. With the affinity-purified anti-Runx2 antibody, immunohistochemical analyses were performed to elucidate the localization of the protein. Furthermore, bioinformatic analyses were performed to predict the function of the protein.Results.ARunx2transcript was detected in testes and was specifically expressed in germ cells. Determination of the transcript structure indicated that the testicularRunx2is a splice isoform. The predicted testicular Runx2 polypeptide is composed of only 106 aa residues, lacks a Runt domain, and appears to be a basic protein with a predominantly alpha-helical conformation. Immunoblot analyses with an anti-Runx2 antibody revealed that Met1in the deduced open reading frame ofRunx2is used as the initiation codon to express an 11 kDa protein. Furthermore, immunohistochemical analyses revealed that the Runx2 polypeptide was located in the nuclei, and was detected in spermatocytes at the stages of late pachytene, diplotene and second meiotic cells as well as in round spermatids. Bioinformatic analyses suggested that the testicular Runx2 is a histone-like protein.Discussion.A variant ofRunx2that differs from the bone isoform in its splicing is expressed in pachytene spermatocytes and round spermatids in testes, and encodes a histone-like, nuclear protein of 106 aa residues. Considering its nuclear localization and differentiation stage-dependent expression, Runx2 may function as a chromatin-remodeling factor during spermatogenesis. We thus conclude that a singleRunx2gene can encode two different types of nuclear proteins, a previously defined transcription factor in bone and cartilage and a short testicular variant that lacks a Runt domain.


2021 ◽  
Vol 118 (4) ◽  
pp. e2019655118 ◽  
Author(s):  
Boyoung Shin ◽  
Hiroyuki Hosokawa ◽  
Maile Romero-Wolf ◽  
Wen Zhou ◽  
Kaori Masuhara ◽  
...  

Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental “ratchet” mechanism making commitment irreversible.


2005 ◽  
Vol 61 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Malka Kitayner ◽  
Haim Rozenberg ◽  
Dov Rabinovich ◽  
Zippora Shakked

Author(s):  
Sun Hee Lee ◽  
Do Young Hyeon ◽  
Soo-Hyun Yoon ◽  
Ji-Hak Jeong ◽  
Saeng-Myung Han ◽  
...  

Abstract Inactivation of tumor suppressor Runt-related transcription factor 3 (RUNX3) plays an important role during early tumorigenesis. However, posttranslational modifications (PTM)-based mechanism for the inactivation of RUNX3 under hypoxia is still not fully understood. Here, we demonstrate a mechanism that G9a, lysine-specific methyltransferase (KMT), modulates RUNX3 through PTM under hypoxia. Hypoxia significantly increased G9a protein level and G9a interacted with RUNX3 Runt domain, which led to increased methylation of RUNX3 at K129 and K171. This methylation inactivated transactivation activity of RUNX3 by reducing interactions with CBFβ and p300 cofactors, as well as reducing acetylation of RUNX3 by p300, which is involved in nucleocytoplasmic transport by importin-α1. G9a-mediated methylation of RUNX3 under hypoxia promotes cancer cell proliferation by increasing cell cycle or cell division, while suppresses immune response and apoptosis, thereby promoting tumor growth during early tumorigenesis. Our results demonstrate the molecular mechanism of RUNX3 inactivation by G9a-mediated methylation for cell proliferation and antiapoptosis under hypoxia, which can be a therapeutic or preventive target to control tumor growth during early tumorigenesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniela Cecconi ◽  
Jessica Brandi ◽  
Marcello Manfredi ◽  
Michela Serena ◽  
Luca Dalle Carbonare ◽  
...  
Keyword(s):  

RNA ◽  
2013 ◽  
Vol 19 (7) ◽  
pp. 927-936 ◽  
Author(s):  
J. Fukunaga ◽  
Y. Nomura ◽  
Y. Tanaka ◽  
R. Amano ◽  
T. Tanaka ◽  
...  
Keyword(s):  

2010 ◽  
Vol 21 (13) ◽  
pp. 2315-2326 ◽  
Author(s):  
Pegine B. Walrad ◽  
Saiyu Hang ◽  
Genevieve S. Joseph ◽  
Julia Salas ◽  
J. Peter Gergen

Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.


Sign in / Sign up

Export Citation Format

Share Document