scholarly journals A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells.

1997 ◽  
Vol 17 (7) ◽  
pp. 4133-4145 ◽  
Author(s):  
Y W Zhang ◽  
S C Bae ◽  
G Huang ◽  
Y X Fu ◽  
J Lu ◽  
...  

The gene AML1/PEBP2 alphaB encodes the alpha subunit of transcription factor PEBP2/CBF and is essential for the establishment of fetal liver hematopoiesis. Rearrangements of AML1 are frequently associated with several types of human leukemia. Three types of AML1 cDNA isoforms have been described to date; they have been designated AML1a, AML1b, and AML1c. All of these isoforms encode the conserved-Runt domain, which harbors the DNA binding and heterodimerization activities. We have identified a new isoform of the AML1 transcript, termed AML1 deltaN, in which exon 1 is directly connected to exon 4 by alternative splicing. The AML1 deltaN transcript was detected in various hematopoietic cell lines of lymphoid to myeloid cell origin, as revealed by RNase protection and reverse transcriptase PCR analyses. The protein product of AML1 deltaN lacks the N-terminal region of AML1, including half of the Runt domain, and neither binds to DNA nor heterodimerizes with the beta subunit. However, AML1 deltaN was found to interfere with the transactivation activity of PEBP2, and the molecular region responsible for this activity was identified. Stable expression of AML1 deltaN in 32Dcl3 myeloid cells blocked granulocytic differentiation in response to granulocyte colony-stimulating factor. These results suggest that AML1 deltaN acts as a modulator of AML1 function and serves as a useful tool to dissect the functional domains in the C-terminal region of AML1.

1998 ◽  
Vol 10 (5) ◽  
pp. 399 ◽  
Author(s):  
David Y. Zhang ◽  
Eugenie R. Lumbers ◽  
June J. Wu

The aim of the study was to determine the amount of angiotensinogen expression and its protein product in fetal sheep liver and kidney in the last third of gestation. Angiotensinogen mRNA was measured by RNase protection assay and its protein levels were measured by radioimmunoassay. Levels were measured at 80, 95, 111, 125 and 139 days. Angiotensinogen mRNA was present in all fetal liver and kidney samples tested. The ratio of hepatic angiotensinogen mRNA/18 S rRNA increased by 100% (P<0.001) and angiotensinogen levels increased by 33% (P<0.001) in fetal sheep from 80 to 139 d. Over the same period the ratio of renal angiotensinogen mRNA/18 S rRNA increased by 170% (P<0.001) and renal angiotensinogen protein increased by 41% (P<0.001). The levels of angiotensinogen mRNA and its protein in the adult kidney were less than in kidneys of 139 d old fetuses (P<0.01). There was a direct relationship between levels of angiotensinogen mRNA and its protein in the liver (r = 0.53, P<0.01, n = 25) and in the kidney (r = 0.75, P<0.0001, n = 24). These findings demonstrate that there is a significant increase in both hepatic and renal angiotensinogen gene expression in the last third of gestation in the fetal sheep and that this increase is associated with an increase of angiotensinogen levels in both tissues. This increase in angiotensinogen in late gestation could influence the activity of both the intrarenal and circulating renin angiotensin systems.


1992 ◽  
Vol 12 (1) ◽  
pp. 183-189
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


1992 ◽  
Vol 12 (1) ◽  
pp. 183-189 ◽  
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 673-673
Author(s):  
Kyle J. Eash ◽  
Daniel C. Link

Abstract Maintenance of neutrophil homeostasis in the blood is vital to the proper functioning of the innate immune system. Neutrophil release from the bone marrow is a major regulated determinant of neutrophil homeostasis in the blood, yet the molecular signals that regulate this process are largely unknown. Accumulating evidence suggests that stromal derived factor-1 (SDF-1), through interaction with its major receptor CXCR4, provides a key retention signal for neutrophils in the bone marrow. Definitive proof of this hypothesis has been hampered by the embryonic lethality of CXCR4−/ − mice and the severe engraftment defect observed in recipients of CXCR4−/ − fetal liver hematopoietic stem cells. To circumvent this problem, in the present study we generated gene-targeted mice in which CXCR4 was selectively inactivated only in myeloid cells. The mice (CXCR4f/−LysM+/Cre) expressed Cre-recombinase under the control of the lysozyme-M promoter and contained one CXCR4-null allele while the other was flanked by loxP sites. Myeloid-specific loss of cell-surface CXCR4 expression was documented by flow cytometry. CXCR4 expression in other lineages was documented at levels comparable to controls. Peripheral blood counts in CXCR4f/−LysM+/Cre mice were normal except for marked neutrophilia. The absolute neutrophil count was 1.23 ± 0.76 and 8.05 ± 3.00 in wild type (wt) and CXCR4f/−LysM+/Cre mice, respectively (p &lt;0.001). Of note, no increase in circulating hematopoietic progenitors or immature myeloid cells was observed in the peripheral blood of CXCR4f/−LysM+/Cre mice. In addition, no perturbation in B or T lymphocytes was detected. In the bone marrow, the number of Gr-1+ myeloid cells was reduced to 69.2 ± 24.1% of control mice. No accumulation of granulocytic precursors was observed, suggesting that granulocytic differentiation in CXCR4f/−LysM+/Cre mice was normal. As a metric for quantifying neutrophil distribution, we calculated the percentage of total body neutrophils in the blood (neutrophil distribution index or NDI) as described previously (Immunity, Vol. 17, 413–423, 2002). Consistent with previous reports, 1.0 ± 0.5% of neutrophils were in the blood of wt mice compared with 9.5 ± 4.2% in CXCR4f/−LysM+/Cre mice (p&lt;0.001). Together, these data provide strong genetic evidence supporting the hypothesis that CXCR4 signals are key regulators of neutrophil release from the bone marrow. A broad range of chemokines and cytokines are known to induce neutrophil release from the bone marrow. A recent report (Blood, Vol. 104, 565–571, 2004) showed that treatment of neutrophils with KC resulted in heterologous desensitization of CXCR4. Another report (Blood, Vol. 108, 812–820, 2006) demonstrated that G-CSF downregulates CXCR4. These observations raise the possibility that disruption of CXCR4 signaling may be a common mechanism by which all mobilizing agents induce neutrophil release. To test this hypothesis, we measured neutrophil mobilization one hour after a single 125 ug/kg injection of G-CSF, a time before any detectable change in SDF-1 expression levels in the bone marrow. Neutrophil numbers increased 1.92 ± 0.16 fold over baseline in wt mice (p&lt;0.05). In contrast, no change was detected in CXCR4f/−LysM+/Cre mice (1.05 ± 0.39 fold over baseline, p=ns). These data show that neutrophil mobilization by G-CSF is dependent upon CXCR4. Studies are underway to characterize neutrophil mobilization by other mobilizing agents in CXCR4f/−LysM+/Cre mice.


2021 ◽  
Author(s):  
Elena Priceputu ◽  
Marc Cool ◽  
Nathalie Bouchard ◽  
Julio Roberto Caceres-Cortes ◽  
Clifford A. Lowell ◽  
...  

HIV or SIV infection causes myelodysplasia, anemia and accumulation of inflammatory monocytes (CD14 + CD16 + ), through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14 + CD16 + cells are CD11b + Gr1 + myeloid-derived suppressive cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4 + T and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b + Gr1 low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b + Gr1 + cell expansion, apparently cell-autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b + Gr1 + cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and G-CSF were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell-autonomously. More cell-restricted expression of Nef in DC and pDC, appears sufficient to induce BM differentiation impairment, granulopoiesis and expansion of MDSC, at the expense of erythroid maturation, through IL-17 → G-CSF, as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia and accumulation of inflammatory monocytes (CD14+ CD16+), the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes and its expression in mouse DC appears sufficient for their development, through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.


1996 ◽  
Vol 149 (1) ◽  
pp. 117-124 ◽  
Author(s):  
X Li ◽  
H Cui ◽  
B Sandstedt ◽  
H Nordlinder ◽  
E Larsson ◽  
...  

Abstract We have studied the insulin-like growth factor-II gene (IGF2) promoter usage in normal human liver from fetal to late adult life by quantifying the specific transcripts by RNase protection assays using exon-specific probes. While the fetal liver uses only three promoters (P2, P3, P4) for the transcription of IGF2, all four promoters can be used from the age of 2 months after birth. The levels of the individual promoter transcripts vary substantially during development and the P3 promoter, which is a highly active fetal promoter, was not used by all the investigated adult patients but was detected in 30% of the adult group as a whole. The PI promoter, which has previously been considered as the only one responsible for IGF2 transcription in the postnatal/adult liver, displayed a trend of increasing relative and absolute activity throughout life, but in some adult cases it was found to be less active than the P4 promoter. The P4 promoter displayed an age-related trend of decreasing activity from a very high fetal level, but individual exceptions were apparent. The P2 promoter transcript, peaking at the age of 2 months, showed a relatively even absolute amount from 18 months onwards. Thus, while P2 and P3 were both found to reach their highest activity after birth, the P4 promoter displayed its highest transcription at the fetal stage. The total IGF2 transcription, primarily from P2, P3 and P4, was found to peak shortly after birth. After this age, the P3 promoter transcript declined most rapidly and a low or zero amount was detected in adulthood. From the age of 18 months to old adulthood the total IGF2 mRNA, derived primarily from P1, P2 and P4, displayed a relatively even amount (approximately one tenth) of that seen at the peak at 2 months. This data may be important in relation to translatability of the various IGF2 transcripts. Journal of Endocrinology (1996) 149, 117–124


2002 ◽  
Vol 22 (24) ◽  
pp. 8681-8694 ◽  
Author(s):  
Janki Rangatia ◽  
Rajani Kanth Vangala ◽  
Nicolai Treiber ◽  
Pu Zhang ◽  
Hanna Radomska ◽  
...  

ABSTRACT The transcription factor C/EBPα is crucial for the differentiation of granulocytes. Conditional expression of C/EBPα triggers neutrophilic differentiation, and C/EBPα can block 12-O-tetradecanoylphorbol-13-acetate-induced monocytic differentiation of bipotential myeloid cells. In C/EBPα knockout mice, no mature granulocytes are present. A dramatic increase of c-Jun mRNA in C/EBPα knockout mouse fetal liver was observed. c-Jun, a component of the AP-1 transcription factor complex and a coactivator of the transcription factor PU.1, is important for monocytic differentiation. Here we report that C/EBPα downregulates c-Jun expression to drive granulocytic differentiation. An ectopic increase of C/EBPα expression decreases the c-Jun mRNA level, and the human c-Jun promoter activity is downregulated eightfold in the presence of C/EBPα. C/EBPα and c-Jun interact through their leucine zipper domains, and this interaction prevents c-Jun from binding to DNA. This results in downregulation of c-Jun's capacity to autoregulate its own promoter through the proximal AP-1 site. Overexpression of c-Jun prevents C/EBPα-induced granulocytic differentiation. Thus, we propose a model in which C/EBPα needs to downregulate c-Jun expression and transactivation capacity for promoting granulocytic differentiation.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57633 ◽  
Author(s):  
Yoshitaka Sunami ◽  
Marito Araki ◽  
Yumi Hironaka ◽  
Soji Morishita ◽  
Masaki Kobayashi ◽  
...  

Author(s):  
Abraham J.P. Teunissen ◽  
Mandy M.T. van Leent ◽  
Geoffrey Prevot ◽  
Eliane E.S. Brechbuhl ◽  
Carlos Pérez-Medina ◽  
...  

The innate immune system plays a key role in atherosclerosis progression and the pathogenesis of cardiovascular disease. Trained immunity, an epigenetically regulated hyperresponsive state of myeloid cells, is a driving force underlying chronic inflammation in atherosclerosis. Therapeutically targeting innate trained immunity therefore may mature into a compelling new paradigm for the effective treatment of cardiovascular patients, which would require effective engagement of myeloid cells. For over a decade, we have worked on apolipoprotein A1-based nanomaterials, referred to as nanobiologics, which we have utilized for myeloid cell-directed immunotherapy. Here, we review the application of our nanobiologic immunotherapies in treating vascular disease. The design of nanobiologic therapeutics, as well as their use in targeting myeloid cells and cellular pathways related to trained immunity, is discussed. Furthermore, we show that nanobiologic biocompatibility and in vivo behavior are conserved across species, from mice to larger animals, including rabbits, pigs, and nonhuman primates. Last, we deliberate on the hurdles that currently prevent widespread translation of trained immunity targeting cardiovascular nanotherapies.


Sign in / Sign up

Export Citation Format

Share Document