scholarly journals Influence of Substrate in Roll-to-roll Coated Nanographite Electrodes for Metal-free Supercapacitors

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicklas Blomquist ◽  
Rajesh Koppolu ◽  
Christina Dahlström ◽  
Martti Toivakka ◽  
Håkan Olin

AbstractDue to the high electric conductivity and large surface area of nanographites, such as graphene and graphite nanoplatlets, these materials have gained a large interest for use in energy storage devices. However, due to the thin flake geometry, the viscosity of aqueous suspensions containing these materials is high even at low solids contents. This together with the use of high viscosity bio-based binders makes it challenging to coat in a roll-to-roll process with sufficient coating thickness. Electrode materials for commercial energy storage devices are often suspended by organic solvents at high solids contents and coated onto metal foils used as current-collectors. Another interesting approach is to coat the electrode onto the separator, to enable large-scale production of flat cell stacks. Here, we demonstrate an alternative, water-based approach that utilize slot-die coating to coat aqueous nanographite suspension with nanocellulose binder onto the paper separator, and onto the current collector as reference, in aqueous metal-free supercapacitors. The results show that the difference in device equivalent series resistance (ESR) due to interfacial resistance between electrode and current collector was much lower than expected and thus similar or lower compared to other studies with a aqueous supercapacitors. This indicates that electrode coated paper separator substrates could be a promising approach and a possible route for manufacturing of low-cost, environmentally friendly and metal-free energy storage devices.

MRS Advances ◽  
2016 ◽  
Vol 1 (53) ◽  
pp. 3573-3578
Author(s):  
Jiasheng Qian ◽  
Shu Ping Lau ◽  
Jikang Yuan

ABSTRACTWe report a simple approach to fabricate high performance energy storage devices based on aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long term stability. Continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, we printed the MnO2 ink on commercially available A4 paper pre-treated by multi-walled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 90.8 mF/cm2. The electrode could maintain 98.7% capacitance retention for 1,000 cycles at 10 mV/s. The MnO2 ink could be a potential candidate for large-scale production of flexible and printable electronic devices for energy storage and conversion.


2020 ◽  
Vol 8 (24) ◽  
pp. 11906-11922 ◽  
Author(s):  
Hao Wang ◽  
Chang-Jiang Yao ◽  
Hai-Jing Nie ◽  
Ke-Zhi Wang ◽  
Yu-Wu Zhong ◽  
...  

Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2016 ◽  
Vol 45 (22) ◽  
pp. 6345-6404 ◽  
Author(s):  
Tyler B. Schon ◽  
Bryony T. McAllister ◽  
Peng-Fei Li ◽  
Dwight S. Seferos

We review organic electrode materials for energy storage devices and suggest directions for future work in this area.


2018 ◽  
Vol 18 (12) ◽  
pp. 8352-8359 ◽  
Author(s):  
Xibin Liu ◽  
Gaohua liao ◽  
Xiang Qi ◽  
Xiaoan Mei ◽  
Jifei Wang ◽  
...  

Hybrid fibers based on MnO2/reduced graphene oxide have been fabricated for flexible energy storage devices. Graphene oxide nanoflakes were reduced in a polytetrafluoroethylene (PTFE) pipeline under the appropriate condition to develop a fiber current collector, which also provides the possibility of weaving. The RGO fiber with the radius of about 35 μm has a resistance of 150 Ω · cm. MnO2 nanoflakes directly grow on the RGO fiber surface acting as the electrode material of the device. The MnO2/RGO hybrid fibers provide excellent energy storage performances. The as-fabricated SC exhibits a high areal capacitance of 1.37 F·cm−2 at the scan rate of 1 mV·s−1, and outstanding long-term cycling stability of 93.75% retention after 5000 cycles. This work demonstrates a cost-effective and versatile strategy for wearable energy storage devices.


2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Author(s):  
Feng Shi ◽  
Quanrun Liu

Background: As an emerging carbon nanomaterial, graphene quantum dots (GQDs) have shown great potential application in new energy storage devices due to their unique small size effect and abundant edge active sites. This work introduces the main synthesis strategies of GQDs, which includes top-down and bottom-up methods; the application examples of GQDs and GQDs-based composites in energy storage are reviewed, and more, the unique advantages of GQDs are used in supercapacitors, Lithium-ion batteries (LIBs) and Lithium-sulfur batteries (Li–S batteries) are highlighted. The problems and development prospects in this growing area are also discussed. Method: We conducted a detailed search of “the application of GQDs in energy storage devices” in the published papers and the public patents based on Web of Science database in the period from 2014 to 2020. The corresponding literature was carefully evaluated and analyzed. Results: Sixty papers and twenty-eight recent patents were included in this mini-review. The significant advances in the recent years are summarized with comparative and balanced discussion. Thanks to the unique properties of large specific surface area, high conductivity and abundant active sites, GQDs have unparalleled potential application for new energy storage, especially improving the specific capacity and cycle stability of supercapacitors, LIBs and Li-S batteries. Conclusion: The findings of this mini-review confirm the importance of GQDs, show the enhanced electrochemical performance in supercapacitors, LIBs and Li-S batteries, and also provide a helpful guide to design and fabricate highefficiency electrode materials.


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document