scholarly journals Three-dimensional real time imaging of amyloid β aggregation on living cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Masahiro Kuragano ◽  
Ryota Yamashita ◽  
Yusaku Chikai ◽  
Ryota Kitamura ◽  
Kiyotaka Tokuraku
2000 ◽  
Vol 113 (20) ◽  
pp. 3663-3671 ◽  
Author(s):  
M. Schrader ◽  
S.J. King ◽  
T.A. Stroh ◽  
T.A. Schroer

We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.


2019 ◽  
Vol 11 (31) ◽  
pp. 27529-27535 ◽  
Author(s):  
Yang Zhang ◽  
Gengwu Zhang ◽  
Peng Yang ◽  
Basem Moosa ◽  
Niveen M. Khashab

2019 ◽  
Vol 10 (33) ◽  
pp. 7690-7694 ◽  
Author(s):  
Yiming Hu ◽  
Xiaoyi Li ◽  
Yu Fang ◽  
Wen Shi ◽  
Xiaohua Li ◽  
...  

A reactive oxygen species-triggered off-on fluorescence H2S donor is develop for the real-time imaging of H2S delivery and the cytoprotection against the hazardous oxidative environment.


2008 ◽  
Vol 13 (1) ◽  
pp. 014006 ◽  
Author(s):  
Jian Lu ◽  
Francisco Pereira ◽  
Scott E. Fraser ◽  
Morteza Gharib

2006 ◽  
Vol 18 (6) ◽  
pp. 692-697 ◽  
Author(s):  
Jesper Glückstad ◽  
◽  
Peter John Rodrigo ◽  
Ivan Perch-Nielsen

Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of the laser light. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Risø National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. These demonstrations illustrate that GPC-driven micro-manipulation can be utilized not only for the improved synthesis of functional microstructures but also for non-contact and parallel actuation crucial for sophisticated opto- and micro-fluidic based lab-on-a-chip systems.


Sign in / Sign up

Export Citation Format

Share Document