scholarly journals Harmonization of postmortem donations for pediatric brain tumors and molecular characterization of diffuse midline gliomas

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Madhuri Kambhampati ◽  
Eshini Panditharatna ◽  
Sridevi Yadavilli ◽  
Karim Saoud ◽  
Sulgi Lee ◽  
...  

AbstractChildren diagnosed with brain tumors have the lowest overall survival of all pediatric cancers. Recent molecular studies have resulted in the discovery of recurrent driver mutations in many pediatric brain tumors. However, despite these molecular advances, the clinical outcomes of high grade tumors, including H3K27M diffuse midline glioma (H3K27M DMG), remain poor. To address the paucity of tissue for biological studies, we have established a comprehensive protocol for the coordination and processing of donated specimens at postmortem. Since 2010, 60 postmortem pediatric brain tumor donations from 26 institutions were coordinated and collected. Patient derived xenograft models and cell cultures were successfully created (76% and 44% of attempts respectively), irrespective of postmortem processing time. Histological analysis of mid-sagittal whole brain sections revealed evidence of treatment response, immune cell infiltration and the migratory path of infiltrating H3K27M DMG cells into other midline structures and cerebral lobes. Sequencing of primary and disseminated tumors confirmed the presence of oncogenic driver mutations and their obligate partners. Our findings highlight the importance of postmortem tissue donations as an invaluable resource to accelerate research, potentially leading to improved outcomes for children with aggressive brain tumors.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiqun Zhang ◽  
Fengju Chen ◽  
Lawrence A. Donehower ◽  
Michael E. Scheurer ◽  
Chad J. Creighton

AbstractThe global impact of somatic structural variants (SSVs) on gene expression in pediatric brain tumors has not been thoroughly characterised. Here, using whole-genome and RNA sequencing from 854 tumors of more than 30 different types from the Children’s Brain Tumor Tissue Consortium, we report the altered expression of hundreds of genes in association with the presence of nearby SSV breakpoints. SSV-mediated expression changes involve gene fusions, altered cis-regulation, or gene disruption. SSVs considerably extend the numbers of patients with tumors somatically altered for critical pathways, including receptor tyrosine kinases (KRAS, MET, EGFR, NF1), Rb pathway (CDK4), TERT, MYC family (MYC, MYCN, MYB), and HIPPO (NF2). Compared to initial tumors, progressive or recurrent tumors involve a distinct set of SSV-gene associations. High overall SSV burden associates with TP53 mutations, histone H3.3 gene H3F3C mutations, and the transcription of DNA damage response genes. Compared to adult cancers, pediatric brain tumors would involve a different set of genes with SSV-altered cis-regulation. Our comprehensive and pan-histology genomic analyses reveal SSVs to play a major role in shaping the transcriptome of pediatric brain tumors.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii299-iii299
Author(s):  
Wafik Zaky ◽  
Long Dao ◽  
Dristhi Ragoonanan ◽  
Izhar Bath ◽  
Sofia Yi ◽  
...  

Abstract BACKGROUND Despite its increasing use, circulating tumor cells (CTCs) have not been studied in pediatric brain tumors. METHODS Cell surface vimentin (CSV) is a marker for CTC detection. We developed an automated CSV-based CTC capture method for pediatric brain tumor using the Abnova Cytoquest platform. PBMCs isolated from blood samples from 52 brain tumor patients were processed to isolate CSV+ CTCs. Captured cells were then stained for CSV and CD45 and scanned to determine the number of CTCs. DIPG samples were additionally examined for H3K27M expression on CSV+ cells. Long term cancer survivors were used as a control cohort. RESULTS 86.4% of all the samples exhibited between 1–13 CSV+ CTCs, with a median of 2 CSV+ CTCs per sample. Using a value of ≥ 1 CTC as a positive result, the sensitivity and specificity of this test was 83.05% and 60.0% respectively. 19 DIPG samples were analyzed and 70% (13 samples) were positive for 1–5 CTCs. Five of these 7 positive CSV+ CTCs DIPG samples were also positive for H3K27M mutations by immunohistochemistry (71%). Mean survival in days for the CTC positive and negative DIPG samples were 114 and 211 days, respectively (p= 0.13). CONCLUSION This is the first study of CTCs in pediatric CNS tumors using an automated approach. Patients with brain tumors can exhibit CSV+ CTCs within peripheral blood. The use of specific molecular markers such as H3K27M can improve the diagnostic capability of liquid biopsies and may enable future disease assessment for personalized therapy.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii1-ii1
Author(s):  
David T W Jones

Abstract The last decade has seen a true revolution in our understanding of the oncogenic mechanisms underlying human tumors, brought about by transformative advances in the technologies available to interrogate the (epi)genetic composition of cancer cells. The dynamic pediatric neuro-oncology community has proven to be very agile in adapting to these changes, and has arguably been at the forefront of some of the most exciting new discoveries in tumor biology in recent years. For example, high-throughput genomic sequencing has revealed highly frequent mutations in histone genes in pediatric glioblastoma; highlighted an ever-expanding role for oncogenic gene fusions in multiple pediatric brain tumor types, and also shed light on novel phenotypic patterns such as chromothripsis (dramatic chromosomal shattering) and somatic hypermutation - the latter being a possible marker for response to novel immunotherapeutic approaches. Epigenetic profiling has also identified a role for ‘enhancer hijacking’ (whereby genomic rearrangement brings an active enhancer element in close proximity to a proto-oncogene) in multiple pediatric brain tumors, and is even pointing towards a fundamentally new way in which tumors may be molecularly classified. In coming years, the major challenge will be to harness the power of these discoveries to more accurately diagnose patients and to identify potential therapeutic targets in a more personalized way, so that these major biological advances can also be translated into substantial clinical benefit. Examples such as the dramatic responses observed in childhood brain tumor sufferers to BRAF V600E and NTRK inhibitors demonstrate the promise that such an approach can hold, but it will require a fundamental shift in the way that clinical trials are planned and conducted in order to optimize patient care. This talk will highlight some of the most striking developments in the field, and look at the challenges that remain before these can lead to improved patient outcomes.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i181-i182
Author(s):  
Roshal Patel ◽  
Katharine Halligan ◽  
Shakti Ramkissoon ◽  
Jeffrey Ross ◽  
Lauren Weintraub

2013 ◽  
Vol 54 (8) ◽  
pp. 1237-1243 ◽  
Author(s):  
K. A. Zukotynski ◽  
F. H. Fahey ◽  
S. Vajapeyam ◽  
S. S. Ng ◽  
M. Kocak ◽  
...  

2011 ◽  
Vol 8 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Claudia M. C. Faria ◽  
James T. Rutka ◽  
Christian Smith ◽  
Paul Kongkham

Pediatric brain tumors are the leading cause of cancer-related death in children, and among them, embryonal tumors represent the largest group with an associated poor prognosis and long-term morbidity for survivors. The field of cancer epigenetics has emerged recently as an important area of investigation and causation of a variety of neoplasms, and is defined as alterations in gene expression without changes in DNA sequence. The best studied epigenetic modifications are DNA methylation, histone modifications, and RNA-based mechanisms. These modifications play an important role in normal development and differentiation but their dysregulation can lead to altered gene function and cancer. In this review the authors describe the mechanisms of normal epigenetic regulation, how they interplay in neuroembryogenesis, and how these can cause brain tumors in children when dysregulated. The potential use of epigenetic markers to design more effective treatment strategies for children with malignant brain tumors is also discussed.


Sign in / Sign up

Export Citation Format

Share Document