scholarly journals Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Amira Ruslanovna Vitt ◽  
...  
2018 ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Yves Briers ◽  
...  

ABSTRACTBacteriophage-encoded endolysins degrading the essential peptidoglycan of bacteria are promising alternative antimicrobials to handle the global threat of antibiotic resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since their outer membrane prevents access to the peptidoglycan. Here we present Innolysins, a novel concept for engineering endolysins that allows the enzymes to pass through the outer membrane, hydrolyse the peptidoglycan and kill the target bacterium. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As our proof of concept, we used phage T5 endolysin and receptor binding protein Pb5, which binds irreversibly to the phage receptor FhuA involved in ferrichrome transport inEscherichia coli. In total, we constructed twelve Innolysins fusing endolysin with Pb5 or the binding domain of Pb5 with or without flexible linkers in between. While the majority of the Innolysins maintained their muralytic activity, Innolysin#6 also showed bactericidal activity againstE. colireducing the number of bacteria by 1 log, thus overcoming the outer membrane barrier. Using anE. coli fhuAdeletion mutant, we demonstrated that FhuA is required for bactericidal activity, supporting that the specific binding of Pb5 to its receptor onE. coliis needed for the endolysin to access the peptidoglycan. Accordingly, Innolysin#6 was able to kill other bacterial species that carry conserved FhuA homologs such asShigella sonneiandPseudomonas aeruginosa. In summary, the Innolysin approach expands recent protein engineering strategies allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.IMPORTANCEThe extensive use of antibiotics has led to the emergence of antimicrobial resistant bacteria responsible for infections causing more than 50,000 deaths per year across Europe and the US. In response, the World Health Organization has stressed an urgent need to discover new antimicrobials to control in particular Gram-negative bacterial pathogens, due to their extensive multi-drug resistance. However, the outer membrane of Gram-negative bacteria limits the access of many antibacterial agents to their targets. Here, we developed a new approach, Innolysins that enable endolysins to overcome the outer membrane by exploiting the binding specificity of phage receptor binding proteins. As proof of concept, we constructed Innolysins againstE. coliusing the endolysin and the receptor binding protein of phage T5. Given the rich diversity of phage receptor binding proteins and their different binding specificities, our proof of concept paves the route for creating an arsenal of pathogen specific alternative antimicrobials.


2015 ◽  
Vol 60 (2) ◽  
pp. 752-756 ◽  
Author(s):  
Abdelhamid Asli ◽  
Eric Brouillette ◽  
Kevin M. Krause ◽  
Wright W. Nichols ◽  
François Malouin

ABSTRACTAvibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated.Staphylococcus aureuswas of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. InEscherichia coli,Pseudomonas aeruginosa,Haemophilus influenzae, andS. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed inStreptococcus pneumoniae(IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling ofS. aureusPBP4 by Bocillin FL. In PBP competition assays withS. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets.


1998 ◽  
Vol 44 (8) ◽  
pp. 784-788
Author(s):  
Min Jiang ◽  
P. Ronald MacLachlan ◽  
Lorne A. Babiuk ◽  
Alexandra J. Bolton ◽  
Andrew A. Potter

Apmis ◽  
1990 ◽  
Vol 98 (1-6) ◽  
pp. 87-94
Author(s):  
I. Nakashima ◽  
T. Kubota ◽  
Y. Zhang ◽  
T. Yoshida ◽  
R. Inagi ◽  
...  

mBio ◽  
2022 ◽  
Author(s):  
Eoghan Casey ◽  
Brian McDonnell ◽  
Kelsey White ◽  
Panagiota Stamou ◽  
Tadhg Crowley ◽  
...  

PhRACS aims to bridge the current divide between in silico genetic analyses (i.e., phageomic studies) and traditional culture-based methodology. Through the labeling of specific bacterial hosts with fluorescently tagged recombinant phage receptor binding proteins and the isolation of tagged cells using flow cytometry, PhRACS allows the full potential of phageomic data to be realized in the wet laboratory.


Author(s):  
Roger C. Wagner

Bacteria exhibit the ability to adhere to the apical surfaces of intestinal mucosal cells. These attachments either precede invasion of the intestinal wall by the bacteria with accompanying inflammation and degeneration of the mucosa or represent permanent anchoring sites where the bacteria never totally penetrate the mucosal cells.Endemic gram negative bacteria were found attached to the surface of mucosal cells lining the walls of crypts in the rat colon. The bacteria did not intrude deeper than 0.5 urn into the mucosal cells and no degenerative alterations were detectable in the mucosal lining.


Sign in / Sign up

Export Citation Format

Share Document